• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
FAPS – Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik
  • FAUZur zentralen FAU Website

    FAPS – Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik

    Menu Menu schließen
    • Aktuelles
      • Neuigkeiten
      • FAPS in der Presse
      • Veranstaltungen
      • Jahresberichte
      • Bücher
      Portal Aktuelles
    • Karriere
      • Wissenschaftliche Mitarbeitende
      • Nichtwissenschaftliche Mitarbeitende
      • HiWi-Angebote
      • Stellenangebote unserer Partner
      • International PhD Candidates
      • FAPS-X
      • FAPS Female
      Portal Karriere
    • Lehrstuhl
      • Leitsätze
      • Klima- und Umweltschutz
      • Chronik
      • Organisation
      • Mitarbeitende
      • Standorte
      • Ausstattung
      • Promotionen
      • FAPS Female
      Portal Lehrstuhl
    • Forschung
      • Forschungsbereiche
      • Technologiefelder
      • Aktuelle Forschungsprojekte
      • Abgeschlossene Forschungsprojekte
      • Publikationen
      Portal Forschung
    • Studium
      • Lehrveranstaltungen
      • Studentische Arbeiten
      • HiWi-Angebote
      • Project on Applied AI
      • Deutschland Stipendium
      • FAPS Fellowship
      • Empfehlungsschreiben
      • FAPS Research Master
      • FAPS Female
      Portal Studium
    • Kooperationen
      • Kooperationsformen
      • Technologie-Transfer
      • Service-Angebote
      • MID Applikationszentrum
      • Verbünde
      • FAPS ProNet e. V.
      • Assoziierte Start-ups
      • Vergabebekanntmachungen
      Portal Kooperationen
    1. Startseite
    2. Studium
    3. Project on Applied AI

    Project on Applied AI

    Bereichsnavigation: Studium
    • Lehrveranstaltungen
    • Studentische Arbeiten
      • Externe Arbeiten
      • Robotik
      • Engineering-Systeme
      • Automatisierungstechnik
      • Medizintechnik
      • Elektronikproduktion
      • Elektromaschinenproduktion
      • Signal- und Leistungsvernetzung
      • E|Road-Center
    • HiWi-Angebote
      • Robotik
      • Engineering-Systeme
      • Automatisierungstechnik
      • Medizintechnik
      • Elektronikproduktion
      • Elektromotorenproduktion
      • Signal- und Leistungsvernetzung
      • E|Road-Center
    • Project on Applied AI
    • Deutschland Stipendium
    • FAPS Fellowship
    • Empfehlungsschreiben
    • FAPS Research Master

    Project on Applied AI

    Project on Applied AI in Factory Automation and Production Systems (AI-FAPS)

    Module content

    For students of the master programs “Artificial Intelligence”, “Data Science”, and “Computational Engineering”, we offer project topics that are related to our current research in applying AI in industry. Other than a course with a fixed topic, project topics are defined individually. Possible topics include the application of cutting-edge AI methods in industrial areas such as

    • electric motor production,
    • electronics production,
    • electric road systems,
    • signal and power networks,
    • automation technology,
    • engineering systems,
    • medical technology, or
    • robotics.

    Depending on the topic, subsymbolic AI methods (e.g., machine learning, deep learning, reinforcement learning), symbolic AI methods (e.g., knowledge-based representation and reasoning), or a combination thereof can be used. Considering the current state of the art as well as the respective problem definition, a suitable AI approach is to be developed and evaluated.

    Target group

    The 10 ECTS project is directed to students of the master programs “Artificial Intelligence (M.Sc.)”, “Data Science (M.Sc.), and “Computational Engineering (M.Sc.)”.
    • Within the AI program, the AI-FAPS project can be selected as either “Project I” or “Project II” and is assigned to the “AI Systems and Applications” pillar due to its strong application focus. According to the examination regulations, your two projects must belong to different pillars. If you have already completed another project at a different institute or plan to do one in parallel with the AI-FAPS project, ensure that the pillars are different. Accordingly, it is also not possible to receive credit for two AI-FAPS projects, as both would fall under the same pillar.
    • Within the Data Science program, the AI-FAPS project can be taken as part of the application subject “Material Science”.
    • Within the Computational Engineering program, the AI-FAPS project can be taken as a “Programming Project” in the 10 ECTS variant.

    Notice: For Master’s students in the ACES, mechanical engineering, and industrial engineering programs, the institute offers separate projects, known as project theses, which are worth 12.5 or 15 ECTS including a seminar. These should not be confused with the present AI-FAPS project module. The AI-FAPS project is only available to approved study programs with exactly 10 ECTS credits. There is no 5 or 7.5 ECTS variant.

    Learning outcomes

    Students will
    • gain practical hands-on experience with an industrial AI use case,
    • learn to systematically develop and implement solution approaches,
    • familiarize themselves with suitable AI algorithms and implement them,
    • become proficient in using appropriate AI-related software libraries and frameworks, and
    • properly refactor and document their implemented code according to common conventions.

    Potential topics and application procedure

    Due to limited capacity, project topics are allocated on an application basis, meaning you cannot simply register for this project module; instead, you must apply for topics with the respective FAPS staff member. Further information on where to find potential topics and how to apply can be found in the corresponding StudOn folder: https://www.studon.fau.de/cat4525463.html

    Friedrich-Alexander-Universität
    Erlangen-Nürnberg

    Schlossplatz 4
    91054 Erlangen
    • Sitemap
    • Impressum
    • Datenschutzerklärung
    • Barrierefreiheit
    • RSS Feed
    • Linkedin
    Nach oben
    Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer DatenschutzerklärungOkDatenschutzerklärung