Index

Entwicklung von Geschäftsmodellen für neue Smart-Energy-Management-Funktionalitäten

Hintergrund: Im Zuge des fortschreitenden Wandels in der Energiebranche und der zunehmenden Bedeutung von nachhaltigen und effizienten Energiemanagementsystemen, bieten sich für innovative Startups vielfältige Möglichkeiten. Diese Abschlussarbeit zielt darauf ab, den Grundstein für ein solches Startup zu legen, indem sie innovative Geschäftsmodelle für neue Energiemanagementfunktionalitäten entwickelt.

Thema: Entwicklung von Geschäftsmodellen für neue Energiemanagementfunktionalitäten mit dem Ziel der Gründung eines Startups.

Mögliche Aufgaben:

  • Analyse aktueller Trends und Herausforderungen in der Energiebranche, insbesondere im Bereich Energiemanagement.
  • Identifikation und Bewertung neuer Technologien und Funktionalitäten im Energiemanagement.
  • Entwicklung innovativer Geschäftsmodelle, die diese neuen Funktionalitäten nutzen.
  • Erstellung eines umfassenden Businessplans, einschließlich Marktanalyse, Strategieentwicklung und Finanzplanung.
  • Erarbeitung eines Konzepts zur Umsetzung und Skalierung des Startups.

 

Leistungsprognose regenerativer Energiequellen für die CO2-neutrale Fabrik der Zukunft

Die natürliche Fluktuation regenerativer Energiequellen stellt die Versorgungsnetze auf die Probe. Gleichzeitig befassen sich zahlreiche Experten mit variablen Strompreisen für Industrie- und den Energiemärkte. In Bezug auf Preisprognosen, aber auch für Anwendugen wie Peak-Shaving und Load-Shiftig und für die Netzstabilität bieten Leistungsprognosen von EEG-Anlagen enorme Mehrwerte. Ziel der Arbeit ist es, ein bestehendes System zur numerischen Wetterprognose an realen Testanlagen der Industrie oder in Privathaushalten individuell nutzbar zu machen und zu optimieren.

Beispielweise nutzt der FAPS numerische Wetterprognosen, um diese in Kombination mit der Generatorausrichtung sowie dem Standort in Leistungsprognosen umzuwandeln. In einem Team mit anderen Studierenden und Wissenschaftlern können diverse Themen bearbeitet werden.

Auswahl möglicher Themen und Fragestellungen:

  • KI-basierte Optimierung der Leistungsprognosen
  • Aufbau einer Datenbank
  • Integration von Preisprognosen des Energiemarkts
  • Monitoring von Leistungsprognosen über Bedienpanels
  • Ankopplung von Leistungsprognosen an Energiemanagementsysteme
  • Kopplung von Leistungsprognosen mit realen Fertigungszellen
  • Kopplung mit Simulationsmodellen/digitalen Zwillingen von Fertigungsanlagen oder MES-Systemen
  • Validierung anhand Beispielanlagen, Aufbau von Messeinrichtungen
  • Nutzung der Prognosen für elektrische Ladeinfrastruktur von Fahrzeugen (z. B. bidirektionales Laden)
  • Weitere Themenstellungen nach Absprache möglich

Anforderungen und Informationen:

  • Gutes Deutsch und Englisch in Wort und Schrift
  • Beginn ab sofort möglich
  • Selbstständige Arbeitsweise erforderlich
  • Aufgabenstellung auch in Form studentischer Teams möglich
  • Hoher Industriebezug durch Zusammenarbeit im Projektkonsortium möglich
  • Bei Projekt-/Masterarbeit: Möglichkeit eines Research Masters und anschließender Promotion gegeben

Einbindung einer bidirektionalen Ladesäule für Elektrofahrzeuge in das Energiemanagement von Produktionsstandorten

Durch Fortschritte in der Batterietechnologie haben moderne Elektrofahrzeuge neben deutlich größeren Reichweiten und besseren Leistungen zukünftig auch die Möglichkeit, als Energiespeicher für den privaten Haushalt und Unternehmen zu dienen. Beispielsweise in industriellen Fuhrparks könnten die Elektrofahrzeuge auf diese Weise große Dienste zur Netzstabilität leisten, indem Sie regenerative Energie zwischenspeichern und Lastspitzen ausgleichen.

In Kooperation mit über 30 namhaften Partnern der Industrie baut der FAPS in seinen Laborhallen eine Demonstratoranlage mit regenerativen Erzeugern, verschiedenen Speichern und industriellen Verbrauchern auf. Für diese Demonstratoranlage wird ebenfalls eine Schnellladesäule entwickelt, welche im Rahmen einer Abschlussarbeit mit dem Energiemanagement des Testnetzes gekoppelt werden muss. Über einen mobilen Aufbau der Ladesäule ist der Test bei regionalen Industriepartnern ebenfalls denkbar.

Industriekooperation: Entwicklung eines Versuchsaufbaus zum Test eines Antriebscontrollers für eine regenerativ gespeiste Produktionsanlage

Für Produktionsanlagen, die über innovative und regenerativ gespeiste Gleichstromnetze betrieben werden, ist ein neuer Antriebscontroller entwickelt worden. Der Antriebscontroller ist deutlich effizienter, materialsparender und stellt die Zukunft für dezentrale Antriebstechnik in der Industrie dar. Ähnlich wie im Elektrofahrzeug kann Bremsenergie zurückgewonnen werden und beispielsweise gespeichert oder direkt verbraucht werden.

Für den Prototypen im Endstadium wird eine spannende Anwendung bzw. ein Use-Case gesucht.

 

Konkreter Inhalt der Arbeit:

– Du entwickelst einen repräsentativen industriellen Use-Case, in dem der Controller und ein dazugehöriger elektrischer Antrieb eingesetzt wird. Für die Elektroplanung stehen ggf. erfahrene Elektroingenieure/Fachkräfte zur Verfügung. Du übernimmst die mechanische/mechatronische Konzeption.

– Bei dem Use-Case hast du freie Hand und Budget für Hardware ist verfügbar.

– Je nach Umfang ist die Integration und Automatisierung in eine Gesamtanlage möglich.

– Ggf. ist die Automatisierung über SPS/PLC oder ein Energiemonitoring in die Aufgabenstellung integrierbar oder über eine ergänzende Abschlussarbeit abhandelbar.

– Die Simulation des Prozesses über einen digitalen Zwilling stellt ebenfalls eine separate Arbeit dar.

– Gerne kann die Abschlussarbeit auch im Team mit anderen Studierenden vergeben werden.

BA/PA/MA – Potentialanalyse / Implementierung eines Machine Learning Modells im Bereich Vakuum-basierter Beschichtungsprozesse basierend auf industriellen Zeitreihen-Daten

Ausgangssituation:

Die Forschung zur Anwendbarkeit des maschinellen Lernens in der Industrie konzentriert sich häufig auf spezifische Anwendungen (Prädiktive Instandhaltung, Qualitätssicherung, Prozesssteuerung, etc.) und/oder spezifische Prozesse/Prozessklassen. Eine mögliche Prozessklasse die man untersuchen kann sind Vakuum-basierte Beschichtungsprozesse. Diese finden Anwendung in einer Vielzahl von zukunftsträchtigen Branchen und einem breiten Feld von Produkten, wie z.B. Halbleitern, Solarzellen, optischen Beschichtungen, uvm.

Representation of a coating from the group of physical vapor deposition (PVD) by Dipl-ing-metaller under CC BY-SA 3.0

Keywords:
Machine Learning, Deep Learning, time-series, Vacuum deposition, Physcial Vapor Deposition (PVD), thin-film coatings

 

Aufgabenstellungen:

Ziel der Arbeit ist die Untersuchung der Einsatzmöglichkeiten von State-Of-the-Art Konzepten und Modellen des maschinellen Lernens auf industriellen Zeitreihen, insb. aus Vakuum-Beschichtungsprozessen, für verschiedene Anwendungsfälle. Je nach Umfang der Arbeit (BA/PA/MA) und Präferenzen, wäre eine mögliche Aufgabenstellung:

  • Fachliche Einarbeitung und Darstellung des Stands der Forschung bezogen auf multivariate industrielle Zeitreihen zur Produkt-Qualitätsvorhersage und Prozessteuerung
  • Identifikation und Beschreibung aktueller Attention-Mechanismen sowie Evaluation des Potentials der Anwendbarkeit auf industrielle Zeitreihen
  • Entwicklung eines Machine Learning/Deep Learning-Modells basierend auf den gewonnenen Erkenntnissen der vorangegangen Einarbeitung
  • Evaluation des Modells anhand verschiedener, öffentlich verfügbarer industrieller Zeitreihendaten

 

Anforderungsprofil und Informationen zur Bewerbung:

  • Interesse an Maschinellem Lernen im industriellen Umfeld, idealerweise bereits erste Erfahrungen
  • Hohe Motivation, Auffassungsgabe sowie strukturierte Arbeitsweise und gute Kommunikationsfähigkeiten
  • IT-Affinität und gute Kenntnisse mind. einer Hochsprache (idealerweise Python) wünschenswert
  • Bearbeitungsbeginn ab sofort möglich
  • Umfang und Inhalte je nach Arbeit (BA/PA/MA) und Präferenzen individuell abstimmbar
  • Bewerbungen bitte mit CV und aktueller Fächer/Notenübersicht per Mail an unten genannten Kontakt

MA in Industriekooperation – Deep Learning for Time Series Signals for Anomaly Detection and Monitoring of Injection Molding Machines

Ausgangssituation:
Das Spritzgussverfahren ist branchenübergreifend eines der wichtigsten Fertigungsverfahren zur kosteneffizienten Produktion großer Stückzahlen von Bauteilen. Moderne Spritzgussmaschinen weisen vielfältige Sensoren zur Erfassung von Betriebsdaten auf. Standardisierte Kommunikationsprotokolle (OPC UA, MQTT) erlauben die einfache Integration weiterer Sensorik zur vollumfänglichen digitalen Abbildung des Maschinenbetriebes. Zur Auswertung der erfassten Daten stehen Methoden des maschinellen Lernens zur Verfügung. Diese lassen automatisiert Rückschlüsse auf die Prozess- und Produktqualität, ohne einer aufwendigen Interaktion mit den menschlichen Anwendern zu. Sie erlauben des Weiteren die Erzeugung von Prognosen über die Entwicklung von Messwerten, welche die Grundlage zur Realisierung einer bedarfsgerechten Wartung (Predictive Maintenance) oder Anpassung von Prozessparametern (Predictive Quality) darstellen.

Bei Spritzgussmaschinen kommen Messgrößen wie bspw. Forminnendruck, Dosierzeit, Temperatur oder Kühlwasserdurchflussmenge standardmäßig eine besondere Bedeutung zu. Hinzu kommt mit modernen Systemen der Körperschall. Geeignet ausgewertet, können diese Parameter die Grundlage zur Effizienzsteigerung des Maschinenbetriebs darstellen.

Keywords:
I 4.0, Predictive Maintenance, Predictive Quality, Injection Moulding, Machine Learning, Process Engineering & Monitoring, Acoustic Sensor, Deep Learning

 

Aufgabenstellungen:

  • Analyse des Spritzgussprozesses an einer ausgewählten Maschine, der IT-Systeme zur Steuerung und Datenerfassung sowie vorausgegangener Arbeiten zum Thema
  • Vergleich zwischen beobachteten physikalischen Effekten und den Signaländerungen
  • Modellierung und Umsetzung von Methoden des maschinellen Lernens (ML) zur Vorhersage von Effekten mit dem Ziel der Effizienzsteigerung
  • Entwicklung einer prototypischen Applikation inkl. graphischer Benutzeroberfläche zur Nutzung der ML-Methoden durch Endanwender
  • Wirtschaftlichkeitsbetrachtung
  • Prototypische Validierung des erarbeiteten Lösungsansatzes
  • Dokumentation der Arbeit

 

Anforderungsprofil:

  • Student der Fachrichtung Ingenieurwissenschaften
  • Programmierkenntnisse in einer Hochsprache (z.B. Python, C++, C#, Java, Matlab)
  • Kenntnisse der physikalischen Grundlagen von Sensoren und Signalverarbeitung
  • Gute Kommunikationsfähigkeit
  • Verhandlungssicheres Englisch in Wort und Schrift

 

Sonstiges:
Die Bearbeitung erfolgt in Zusammenarbeit mit einem Industriepartner.

 

 

Industriekooperation/Produktentwicklung: Integration eines Batteriespeichers in das Energiemanagement ein gleichstromversorgten Produktionsanlage

Die fortschreitende Energiewende erfordert innovative Lösungen zur effizienten Speicherung und Nutzung erneuerbarer Energiequellen. Die Integration von Batteriespeichern in das Energiemanagement spielt dabei eine entscheidende Rolle.

Für eine Musterproduktionszelle mit innovativer Versorgungsinfrastruktur (regenerativ gespeistes Gleichstromnetz ~650 VDC) wird ein leistungsfähiger Batteriespeicher mit integrierter Ladeelektronik weiterentwickelt. Im Rahmen der Abschlussarbeit werden hierbei eine Kommunikation zwischen Speicher und Industriesteuerung (SPS/PLC) hergestellt und neue Betriebskonzepte (z. B. Notstrombetrieb, Eigenverbrauchsoptimierung, CO2-Optimierung kostenbasierte Steuerung etc.) erarbeitet. Optimalerweise sind die Lösungen in die Serienentwicklung beim Industriepartner überführbar.

Die Arbeit verläuft in enger Abstimmung mit dem Industriepartner und erfordert sowohl einen Praxisteil in der Laborhalle des FAPS in Erlangen als auch in Verbindung mit Besuchsterminen beim Industriepartner in Nürnberg.

 

Automatisierung und Energievermessung eines Industrieroboters mit effizienzoptimiertem Netzanschluss

Im Rahmen der Energiewende verlagert sich der Fokus von fossilen Brennstoffen und Atomenergie zu erneuerbaren Energiequellen. Hybride Netzstrukturen aus einer Kombination aus Gleich- und Wechselstrom vereinen die Vorteile beider Versorgungsstrategien. Sie berücksichtigen jede Art von Verbrauchern, Speichern und Erzeugern.

In Kooperation mit über 30 namhaften Partnern der Industrie baut der FAPS in seinen Laborhallen eine Demonstratoranlage mit regenerativen Erzeugern, verschiedenen Speichern und industriellen Verbrauchern auf. Entstandene Simulationen können dort messtechnisch validiert und das Gesamtkonzept auf die praktische Umsetzbarkeit sowie die Wirtschaftlichkeit untersucht werden.

In der Abschlussarbeit soll ein optimiertes Anschlusskonzept messtechnisch überprüft werden, indem ein Roboter über eine Speicherprogrammierbare Steuerung (SPS) fremdgesteuert wird und die Messwerte der Strom- und Leistungsmessung visualisiert werden.

Optimierte Nutzung bifazialer Solarstrommodule – Entwicklung lichtlenkender Architekturfragmente

Bifaziale Solarmodule sind eine Art von Solarmodulen, die sowohl auf der Vorder- als auch auf der Rückseite Sonnenlicht einfangen können. Im Gegensatz zu herkömmlichen Solarmodulen, die nur auf der Vorderseite Licht absorbieren, nutzen bifaziale Module auch das reflektierte Licht von der Rückseite.

In der Abschlussarbeit sollen Konzepte und Modelle für die optimierte Nutzung bifazialer Solarstrommodule entwickelt und untersucht werden. Dazu gehört die Identifizierung von Einsatzszenarien wie beispielsweise die Integration in die Gebäudehülle/auf Dächer und die Installation von reflektierender Spiegel oder Bleche. Bei Interesse könnten auf wirtschaftliche Evaluationen oder die Realisierung von Testaufbauten in die Abschlussarbeit integriert werden.

PA/ MA Kennzahlensystem und User Interface zur Anwendung eines digitalen Zwillings in hybriden Produktionssystemen I In enger Kooperation mit Industriepartnern

Im Forschungsprojekte ReProSi – Ressourcenorientierte Auftragsregelung hybrider Produktionen mittels betriebsbegleitender Simulation – wird ein Produktionsregelungssystem anhand eines digitalen Zwillings entwickelt und validiert.

Im Anwendungsbeispiel Kalksandstein-Industrie treffen stark gestiegene Variantenzahlen auf große Unwägbarkeiten bzgl. der am Ende zu liefernden Stein-Variante, auf schwer vorhersagbare externe Faktoren wie Witterung, Rohstoffqualität etc. sowie einen trägen, chargengestützten, hybriden Fertigungsprozess, der eine Flexibilität in Form einer kundenindividuellen, auftragsbezogenen Einzelfertigung im Kundentakt kaum ermöglicht. KS-Unternehmen begegnen dem Käufermarkt mit einem Make-to-Stock Produktionskonzept und nehmen hohe Lagerbestände mit enormem Bedarf an Working Capital und Fläche in Kauf.

Um Aufwand zur Planung und Steuerung der Produktion vor diesem Hintergrund in Grenzen zu halten wurde der Planungs- und Steuerungsprozess in Richtung einer automatisierten, simulationsbasierten Fertigungsregelung analog dem Industrie 4.0-Ansatz weiterentwickelt.

Das entwickelte KS-Cockpit zur simulationsbasierten Fertigung soll den Betriebsleiter in die Lage versetzen, die Fertigungsabläufe laufend zu überwachen, bei auftretenden Veränderungen gegenüber der Ausgangsplanung eine fundierte Lösung durch eine optimierende Simulation im digitalen Zwilling abzuleiten und diese dann in die Fertigungssteuerung zurückzuspielen.

Bisher wurden Simulationsverfahren fast ausschließlich im Rahmen langfristiger, strategischer Entscheidungen eingesetzt, wie etwa bei Werks-Neuplanungen, größeren Änderungen im Fertigungslayout, etc.

Das KS-Cockpit ermöglicht eine kontinuierliche Überwachung der Fertigungsabläufe sowie eine vorausschauende, optimale Reaktion auf Planabweichungen.

In der ausgeschriebenen Masterthesis oder Projektarbeit soll ein Konzept des KS-Cockpit erarbeitet werden, wobei die darzustellenden Informationen unter fundierter theoretischer Bearbeitung des Standes der Wissenschaft begründet sowie eine erste Implementierung eines User Interfaces in enger Kooperation mit Industriepartnern erfolgen soll.

 

Aufgabenstellung:

  • Analyse von Wettbewerbsfaktoren in der Kalksandstein-Produktion
  • Herleitung von Kennzahlen (ggfs. in einem Kennzahlensystem) zur betriebsbegleitenden Steuerung hybrider Produktionssysteme
  • Entwurf und Implementierung von User Interface-Elementen in Plant Simulation
  • Programmierung von Datenauswertungen
  • Simulationsmodellierung von Produktionswerken
  • Simulationsdatenverwaltung
  • Entwicklung in enger Kooperation mit Industriepartnern

 

Die Arbeitsinhalte können individuell abgestimmt und angepasst werden. Der Startzeitpunkt kann bestenfalls ab sofort erfolgen.

Für inhaltliche und organisatorische Fragen sowie Interessensbekundungen, unkompliziert einfach an