Durch moderne Computer Vision Verfahren wird die automatisierte Qualitätsprüfung komplexer Systeme immer robuster. Jedoch bedarf das Training der Modelle umfangreiche Trainingsdatensätze. Für alltägliche Objekte wie beispielsweise Autos oder Tiere existieren hierfür eine Vielzahl an Datensätzen und bereits fertig trainierte Modelle. Für industrielle Anwendungen ist die Verfügbarkeit mager. Die Qualität der Ergebnisse in der industriellen Bildverarbeitung hängt jedoch stark von der Qualität und dem Umfang der Trainingsdatensätze ab. Gleichzeitig müssen Daten häufig manuell annotiert und segmentiert werden, was sehr zeitaufwendig und fehleranfällig ist.
Ziel dieser Arbeit ist die Entwicklung eines Systems, zur synthetischen Erstellung von Trainingsdatensätzen für die Automatisierung im Schaltschrankbau. Es sollen 3D-Scans von elektrischen Komponenten aus dem Schaltschrankbau realitätsnah und in unterschiedlichen Konfigurationen (Anordnungen, Beleuchtungen, Hintergründe, …) gerendert werden. Die virtuell erzeugten Bilder sollen dann automatisiert annotiert und segmentiert werden, um in kurzer Zeit einen umfangreichen Trainingsdatensatz erstellen zu können. Neben der Zeitersparnis sorgt dies auch für eine reproduzierbare Qualität der Trainingsdaten beim Einführen neuer Komponenten.
Die ausgeschriebene studentische Arbeit ist Teil des Projekts ProTekt, das die automatisierte optische und elektrische Prüfung von Schaltschränken zum Ziel hat.
Die Arbeit umfasst:
- Recherche zum aktuellen Stand der Forschung im Bereich synthetischer Trainingsdaten
- Erstellung und Vorbereitung der 3D Scans von ausgewählten Komponenten (z.B. mit Keyence 3D Scanner)
- Programmieren des Renderers inkl. automatisierter Anreicherung der Szene durch Variation von:
Benachbarte Komponenten, Beschriftungen auf den Komponenten, Beleuchtung, Einfügen von Kabeln, … (je nach Möglichkeit/Notwendigkeit/Ergebnissen) - Programmierung der Software-Pipeline zur Annotation der generierten 2D-Bilder
- Training eines Modells zum Testen des erstellten Datensatzes an realen Komponenten
Voraussetzungen
- Studium im Bereich Maschinenbau / IPEM / WING / Mechatronik / Elektrotechnik o.Ä.
- Solide Programmierkenntnisse – vorzugsweise in Python
- Gutes Verständnis für optische und räumliche Zusammenhänge, Interesse an Computer Vision
- Aber am wichtigsten: Kreativität, Eigenverantwortung und die Lust, verschiedene Möglichkeiten der Umsetzung auszuprobieren
Benefits:
- Hoher Programmieranteil – Arbeit von überall möglich
(ein paar Termine vor Ort werden nötig sein, um realen Aufbau zu verstehen und die Komponenten zu scannen) - Arbeiten an einer realen Computer Vision Anwendung aus der Industrie mit Impact
- Freiheit in der Gestaltung der Lösung
- Möglichkeit für Anschlussarbeit oder anschließende Anstellung als HiWi in ähnlichem Themengebiet (Automatisierung, Bildverarbeitung, Robotik, Schaltschrankbau)
Die Arbeit kann in Deutsch oder Englisch geschrieben werden.
Der Roboteraufbau befindet sich am FAPS in Nürnberg “auf AEG”. Gut erreichbar mit den öffentlichen Verkehrsmitteln.
Anfragen bitte per Mail mit aktueller Notenübersicht und Lebenslauf
Kategorien:
Forschungsbereich:
Signal- und LeistungsvernetzungArt der Arbeit:
Masterarbeit, ProjektarbeitStudiengang:
IPEM, Maschinenbau, Mechatronik, WirtschaftsingenieurwesenKontakt:
Matthias Lang, M.Sc.
Department Maschinenbau (MB)
Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik (FAPS, Prof. Franke)
- Telefon: +491622389607
- E-Mail: matthias.lang@faps.fau.de