Index

Voice-first UX & Interaction Design für einen embedded AI Shopping Butler

Kurzbeschreibung
Wir entwickeln einen Shopping Butler für Supermärkte: einen agentischen AI-Assistenten, der Nutzer:innen beim Online-Einkaufen unterstützt – von Rezept- und Gerichtsvorschlägen bis zur Produktauswahl und dem Befüllen des Warenkorbs. Der Butler soll embedded in die App/Website eines Supermarkts integriert werden (z. B. perspektivisch REWE Online, EDEKA, dm) – kein separater Chatbot, sondern Teil des Shopping-Erlebnisses.

In dieser Arbeit liegt der Fokus auf der kompletten Nutzerinteraktion (UX/Interaction): Voice-first Kommunikation, visuelle Unterstützung, Streaming/Realtime-Feedback und die transparente Darstellung agentischer Aktionen.

Ziel der Arbeit

Du entwickelst ein Interaction Layer-Konzept und setzt es als funktionierenden Prototypen um:

  • Der Nutzer spricht mit dem Butler (Voice-first).

  • Der Butler antwortet bevorzugt per Voice, mit optionalen visuellen Ergänzungen.

  • Agentische Aktionen (z. B. Produktsuche, Filtern, “Add to cart”) werden im UI verständlich und vertrauenswürdig visualisiert.

  • Die Interaktion fühlt sich flüssig an: Streaming, kurze Zwischenstände, gutes Turn-taking.

Aufgaben / Inhalte

  • Konzeption und Implementierung eines embedded UI-Konzepts für einen Butler in einer Supermarkt-App/-Website
    (präsent, aber nicht störend; Shop bleibt sichtbar)

  • Entwicklung von UI-Patterns für Agent Action Visualization
    (z. B. “zeigt/markiert” UI-Elemente, Status/Timeline, Confirmation/Undo, Sicherheit/Transparenz)

  • Voice-first Interface: Mikrofon/Listening UI, Audio-Ausgabe, optionaler “Silent Mode” (Captions/Text-Cards)

  • Streaming/Realtime UX: Integration von token-/event-basiertem Streaming aus dem Agent-Core (SSE/WebSockets), State Rendering

  • Turn-taking verbessern: Ansätze vergleichen (z. B. Voice Activity Detection(VAD)/End-of-Utterance/Bar­ge-in) und einen Ansatz implementieren + evaluieren

  • Integration in das bestehende System, das im Team bereits entwickelt wird

Technische Themen (Auswahl)

  • Frontend Engineering (React oder Angular), State Management, Component Design

  • Realtime/Streaming (SSE/WebSockets), event-driven UI

  • Voice/Audio: WebAudio, VAD/End-of-utterance, STT/TTS APIs

  • Schnittstelle zum Agent-Core: Streaming, Actions/Events, UI-Rendering

Was du mitbringen solltest (Must-have)

  • Sehr gute Erfahrung mit Frontend/UI-Projekten (React oder Angular) – idealerweise an echten Produkten/Prototypen

  • Sehr gute Software-Engineering-Basics: Git, saubere Code-Struktur, Debugging, Komponenten-Architektur

  • Erfahrung mit Realtime UIs (WebSockets/SSE)
  • Hohe Motivation, Ownership und Lust auf Teamarbeit und Integration in ein bestehendes System

  • Sehr gute Deutsch- und/oder Englischkenntnisse in Wort und Schrift (mind. C-Niveau)

Nice-to-have

  • Erfahrung mit Voice/Audio Processing oder Speech Interfaces (STT/TTS, VAD, Streaming Audio)

  • Full-stack Verständnis (wie FE ↔ BE ↔ DB zusammenspielen)
  • Erste Erfahrung mit LLMs/agentischen Systemen (Streaming Responses, Tool Events)

Was wir bieten

  • Kompetentes, dynamisches Team mit hohem Anspruch und schneller Iteration

  • Produktnahe Arbeit mit echtem Nutzerwert und klarer Anwendung

  • Großer Gestaltungsspielraum im Interaction Layer

  • Perspektive auf Weiterarbeit – je nach Fit auch im Ausgründungskontext

Kontakt

Schick uns kurz dein Profil (CV, Notenauszug, ggf. GitHub/Projektlinks) sowie 3–5 Sätze zu:

  • Was hast du konkret schon im UI/Frontend gebaut?

  • Was reizt dich an Voice-first Interaction & Realtime UX?

  • Mini-Challenge: Skizziere kurz in 5–8 Bulletpoints dein UI-Konzept: Wie bleibt der Shop trotz Butler sichtbar, wie zeigt der Butler Aktionen, und wie sieht der “silent mode” aus?

Ansprechpartner:

Andreas Morello, M.Sc.

Data & Integration Layer für einen agentischen AI Shopping Butler

Kurzbeschreibung
Wir entwickeln einen Shopping Butler für Supermärkte: einen agentischen AI-Assistenten, der Nutzer:innen direkt beim Online-Einkaufen unterstützt – von Gerichts- und Rezeptvorschlägen bis zur Auswahl konkreter Produkte und dem Befüllen des Warenkorbs. Der Butler soll nicht als externer Service, sondern embedded in die App/Website eines Supermarkts integrierbar sein (z. B. perspektivisch REWE Online, EDEKA, dm).

Technisch setzen wir auf eine agentische Architektur (u. a. LangGraph) mit Fokus auf geringe Latenz, robuste Tool-Interfaces, und einen supermarkt-agnostischen Core, der später für unterschiedliche Supermärkte auslieferbar ist.

Zentraler Systemgedanke: Agnostische Daten + Händler-Adapter

Unser Butler kombiniert:

  1. einen händlerunabhängigen Data/Knowledge-Layer (z. B. Rezeptdatenbank, Ernährungs-/Constraint-Logik, Präferenzen)

  2. händlerspezifische Integrationen (Produktkatalog, Verfügbarkeit, Preise, Warenkorb)

Diese Arbeit adressiert die technische Schnittstelle zwischen Agent ↔ Daten ↔ Händler.

Dein Fokus in dieser Arbeit
Du kümmerst dich um die Anbindung von Online-Supermärkten an den Agenten – aber nicht als “reine Integration”, sondern als AI-orientiertes Tool- und Interface-Design: Welche Daten und Aktionen braucht ein Agent wirklich, wie müssen Tool-Interfaces aussehen, wie modelliert man Produktdaten robust, und welche Schnittstellen muss ein Händler bereitstellen?

Aufgaben / Inhalte

A) Agnostischer Data & Knowledge Layer

  • Konzeption eines Schemas für Rezept-/Meal-Daten (Zutaten, Mengen, Tags, Allergene, Ernährungsziele, Kostenindikatoren, Substitutionslogik)

  • Aufbau einer Datenpipeline (Import/Normalization/Validation), sodass Daten versioniert und erweiterbar bleiben

  • Entwurf eines Retrieval-Konzepts (RAG): welche Felder werden indexiert, wie wird gesucht (z. B. nach “high protein, vegan, 20 min, günstig”), wie werden Quellen zurückgeführt

  • Qualitäts-/Evaluationsmethoden: Konsistenzchecks, Coverage, Retrieval-Qualität

B) Händler-Integration als Agent-Tools

  • Entwurf eines kanonischen Retail-Interfaces (Tool-Design) für agentische Systeme
    (Produktsuche, Produktdetails, Preis/Verfügbarkeit, Alternativen, Warenkorb-Aktionen)

  • Definition von Mapping-Strategien: Zutaten aus Rezepten → passende Händlerprodukte (Einheiten, Packungsgrößen, Synonyme, Kategorien)

  • Implementierung von Connectoren/Adaptern für mind. 1 Händler (oder realistischer Mock) + Erweiterbarkeit auf weitere

  • Low-Latency & Robustheit: Caching, Timeouts, Retries, Observability

C) Systemdesign & Produktisierung

  • Modularer Aufbau (agnostischer Core + Adapter), klare Schnittstellen und Datenverträge

  • Analyse: Welche Schnittstellen muss ein Händler bereitstellen (APIs, Events, ggf. MCP-ähnliche Tool-Gateways)?

Technische Themen (Auswahl)

  • Daten: Schema-Design, Pipelines, Validierung, Indexing, Retrieval/RAG
  • Backend/Integration: REST/GraphQL/MCP, Auth, Rate Limits, Fehlerbehandlung

  • Systemdesign: Multi-Customer-Architektur, Observability, Performance

Was du mitbringen solltest (Must-have)

  • Master-Studium im Bereich AI oder verwandten Feldern

  • Starkes Backend- & Datenverständnis (Schemas, saubere Schnittstellen, Datenqualität)

  • Sehr gute Software-Engineering-Basics: Git, strukturierter Code, Debugging, Tests (Grundlagen)

  • Full-stack Verständnis (wie FE ↔ BE ↔ DB zusammenspielt)

  • Hohe Eigenmotivation: du arbeitest gern hands-on, lieferst Ergebnisse, übernimmst Ownership und hast Lust auf ein ambitioniertes, reales Projekt

  • Sehr gute Deutsch- und/oder Englischkenntnisse in Wort und Schrift (mind. C-Niveau)

Nice-to-have

  • Erste Erfahrung mit LLMs/Agenten (Tools, Prompting, LangChain/LangGraph o. ä.)

  • Erfahrung mit API-Design, Datenmodellierung, Integrationen

  • Schon mal ein Produkt/Prototyp “from scratch” gebaut

Was wir bieten

  • Ein kompetentes, dynamisches Team mit hohem Anspruch und schneller Iteration

  • Produktnahe Forschung: Arbeit an einem produktnahen Projekt (Transfer/Anwendung klar im Fokus)

  • Hoher Gestaltungsspielraum: du definierst Interfaces, die später als Standard für Integrationen dienen können

  • Perspektive auf Weiterarbeit – je nach Fit und Projektphase auch im Gründungskontext

Rahmen

  • Start: ab sofort / nach Absprache

  • Umfang: Masterarbeit

  • Ort: (Lehrstuhl/Hybrid) nach Absprache, Regeltermine

Kontakt

Schick uns kurz dein Profil (CV, aktueller Notenauszug, ggf. GitHub/Projektlinks) sowie 3–5 kurze Sätze zu:

  • Was hast du konkret schon gebaut oder umgesetzt?
    (z. B. Projekte, Systeme, Prototypen, Integrationen)

  • Was interessiert dich an agentischen Systemen, Daten & Integrationen in diesem Projekt?

  • Mini-Challenge: Skizziere kurz (5-8 Bulletpoints), wie du Zutaten aus einer Rezeptdatenbank auf konkrete Supermarktprodukte mappen würdest (inkl. Einheiten, Packungsgrößen und Alternativen).

Ansprechpartner:

Andreas Morello, M.Sc.

[BA/PA/MA] Analyse globaler Finanzprodukte zur Förderung grüner Technologien: Eine systematische Literaturübersicht zur Identifikation von Hebeln und Finanzierungslücken für das 1,5-Grad-Ziel

Motivation & Hintergrund

Die Erreichung des globalen 1,5-Grad-Ziels des Pariser Klimaabkommens erfordert eine massive Transformation hin zu einer nachhaltigen Wirtschaft und die schnelle Skalierung grüner Technologien. Trotz des wachsenden Bewusstseins für Klimaschutz und Nachhaltigkeit ist die Finanzierung vieler klimapolitisch sinnvoller Innovationen und Projekte noch unzureichend. Es stellt sich die drängende Frage, welche Finanzierungsinstrumente bereits existieren, wo deren Grenzen liegen und warum nicht alle notwendigen grünen Technologien im erforderlichen Umfang finanziert werden. Der Finanzsektor spielt hierbei eine entscheidende Rolle als Katalysator oder Hemmschuh für den Übergang zu einer kohlenstoffarmen Zukunft.

Diese Masterarbeit entsteht in Kooperation mit einem Unternehmen, das ein tiefes Interesse daran hat, die Landschaft der grünen Finanzierung zu verstehen, um eigene Strategien und Investitionsentscheidungen zu optimieren. Die Arbeit wird als selbstständige, wissenschaftliche Literaturrecherche durchgeführt und bietet die Möglichkeit, einen kritischen Beitrag zur aktuellen Debatte um Klimafinanzierung zu leisten.

Das Thema ist für Masterstudierende von hoher Relevanz und anspruchsvoll. Es verlangt nicht nur ein fundiertes Verständnis der Finanzmärkte und ihrer Produkte, sondern auch ein kritisches Urteilsvermögen bezüglich deren Effektivität im Kontext globaler Klimaziele. Die systematische Anwendung einer etablierten Forschungsmethodik wie PRISMA sowie die Fähigkeit, komplexe Zusammenhänge zwischen Finanzinnovationen und Klimaschutz darzustellen, machen diese Arbeit zu einer wertvollen akademischen und praktischen Herausforderung.

 

Ziel der Arbeit

Das übergeordnete Ziel dieser Masterarbeit ist die systematische Identifikation, Kategorisierung und kritische Bewertung globaler Finanzprodukte, die zur Finanzierung grüner Technologien eingesetzt werden.

Mithilfe einer umfassenden Literaturrecherche nach der PRISMA-Methode sollen die charakteristischen Merkmale, Anwendungsbereiche und Wirkungsweisen dieser Finanzinstrumente herausgearbeitet werden. Ein zentrales Anliegen ist es, die konkreten Hebel zu identifizieren, die diese Produkte zur Förderung grüner Technologien nutzen, sowie die bestehenden Limitationen und Finanzierungslücken aufzuzeigen, die der Erreichung des 1,5-Grad-Ziels entgegenstehen. Die Arbeit soll somit eine fundierte Basis für die Entwicklung zukünftiger Strategien zur effektiveren Klimafinanzierung schaffen.

Der Fokus der Arbeit liegt primär auf der Methodenentwicklung (systematische Anwendung der PRISMA-Methode) und der empirischen Analyse der identifizierten Finanzprodukte und ihrer Charakteristika, ergänzt durch eine kritische Bewertung ihrer Wirksamkeit.

 

Aufgabenstellung

 

Die Masterarbeit umfasst folgende Hauptaufgabenblöcke:

  1. Konzeption der systematischen Literaturrecherche nach PRISMA o.Ä.:
    • Definition der Forschungsfrage(n) und relevanter Schlüsselbegriffe für die Literaturrecherche.
    • Entwicklung eines detaillierten Suchprotokolls gemäß der PRISMA-Methodik, einschließlich der Auswahl geeigneter wissenschaftlicher Datenbanken (z.B. Web of Science, Scopus, Google Scholar, sowie ggf. spezifische Finanzdatenbanken wie Bloomberg Terminal oder Refinitiv Eikon).
    • Festlegung von Ein- und Ausschlusskriterien für die zu analysierenden Publikationen und Finanzprodukte.
  2. Durchführung der systematischen Literaturrecherche und Datenerhebung:
    • Systematische Durchführung der Literaturrecherche anhand des entwickelten Suchprotokolls (Identifikation, Screening, Prüfung der Eignung).
    • Extraktion relevanter Informationen aus den identifizierten Publikationen, um die Finanzprodukte für grüne Technologien detailliert zu beschreiben. Dies umfasst: Art des Finanzprodukts, Zieltechnologien, geografischer Fokus, Volumen, beteiligte Akteure, Wirkungsmechanismen, identifizierte Erfolgsfaktoren und Herausforderungen.
    • Dokumentation des gesamten Prozesses, inklusive der Anzahl der identifizierten, gescreenten und eingeschlossenen Artikel, gemäß PRISMA-Flow-Diagramm.
  3. Analyse und Kategorisierung der Finanzprodukte:
    • Kategorisierung der identifizierten Finanzprodukte basierend auf ihren Charakteristika, Wirkungsweisen und Zielsetzungen (z.B. nach Art der Finanzierung, Risikoprofil, Sektorbezug).
    • Detaillierte Ausarbeitung, worin sich die Produkte unterscheiden, ergänzen oder ähneln.
    • Identifikation der konkreten “Hebel”, die diese Finanzprodukte nutzen, um die Entwicklung und Skalierung grüner Technologien zu fördern (z.B. Risikoteilung, Anreize, Kapitalmobilisierung).
    • Analyse des globalen Marktes und regionaler Besonderheiten, auch wenn viele Fonds regional beschränkt sind.
  4. Kritische Bewertung und Identifikation von Finanzierungslücken:
    • Kritische Bewertung der Effektivität und Reichweite der identifizierten Finanzprodukte im Hinblick auf die Erreichung des 1,5-Grad-Ziels.
    • Identifikation von Bereichen, in denen die aktuelle Finanzierungslandschaft Lücken aufweist oder unzureichend ist, um klimapolitisch sinnvolle Technologien im erforderlichen Maße zu finanzieren.
    • Analyse der Ursachen für diese Lücken (z.B. Marktversagen, regulatorische Hürden, Wahrnehmung von Risiken, fehlende Anreize).
  5. Ableitung von Handlungsempfehlungen:
    • Formulierung von fundierten Handlungsempfehlungen für Unternehmen, Investoren, politische Entscheidungsträger und Technologieentwickler, um die Finanzierung grüner Technologien zu optimieren und bestehende Lücken zu schließen.
    • Vorschläge für die Weiterentwicklung bestehender oder die Schaffung neuer Finanzinstrumente.

 

Erwarteter Output

Die Masterarbeit soll folgende Ergebnisse liefern:

  • Schriftliche Masterarbeit: Eine wissenschaftliche Ausarbeitung, die die Motivation, die detaillierte Methodik (PRISMA-Protokoll und -Durchführung), die Analyse der Finanzprodukte, die kritische Bewertung und die abgeleiteten Handlungsempfehlungen darlegt.
  • PRISMA-Flow-Diagramm: Eine grafische Darstellung des Rechercheprozesses.
  • Strukturierte Datenbank/Übersicht: Eine detaillierte und kategorisierte Übersicht der identifizierten Finanzprodukte (z.B. in Excel oder einem vergleichbaren Format), die deren wesentliche Merkmale und Wirkungsweisen zusammenfasst.
  • Visualisierungen: Klare und aussagekräftige grafische Darstellungen der Ergebnisse (z.B. tabellarische Übersichten, vergleichende Matrizen, Flussdiagramme von Finanzierungsströmen oder Netzwerkdiagramme), die die Vielfalt, Überschneidungen und Lücken der Finanzprodukte illustrieren. Hierfür können gängige Tools wie Excel, PowerPoint oder bei Bedarf Python/R-Bibliotheken genutzt werden.
  • Praxisempfehlungen: Konkrete und umsetzbare Empfehlungen zur Verbesserung der Finanzierung grüner Technologien.

 

Zielgruppe & Anforderungen

Diese Masterarbeit richtet sich an engagierte Studierende der folgenden Studiengänge:

  • Wirtschaftswissenschaften
  • Wirtschaftsingenieurwesen
  • MBA-Programme
  • oder verwandte Studienrichtungen mit wirtschaftlichem Fokus

Erforderliche Kenntnisse und Fähigkeiten:

  • Ausgeprägte analytische Fähigkeiten und ein kritisches Urteilsvermögen.
  • Erfahrung mit wissenschaftlichen Datenbanken (z.B. Web of Science, Scopus) und idealerweise Kenntnisse im Umgang mit Finanzdatenbanken (z.B. Bloomberg Terminal, Refinitiv Eikon) oder die Bereitschaft, sich diese anzueignen.
  • Kenntnisse in Literaturverwaltungssoftware (z.B. Citavi, EndNote, Zotero) sind von Vorteil.
  • Interesse an Finanzmärkten, grünen Technologien, Klimaschutz und datenbasierter Entscheidungsunterstützung.

Soft Skills:

  • Analytisches Denkvermögen und Problemlösungskompetenz.
  • Selbstständige, strukturierte Arbeitsweise und hohe Eigeninitiative.
  • Exzellente Kommunikationsfähigkeiten in Wort und Schrift (für die wissenschaftliche Ausarbeitung und Präsentation).
  • Sehr gute Deutsch- und gute Englischkenntnisse in Wort und Schrift.

 

Rahmenbedingungen

  • Dauer: Die Bearbeitungszeit für die Masterarbeit beträgt 6 Monate.
  • Beginn: Der Beginn der Arbeit ist nach Absprache flexibel gestaltbar.
  • Betreuung: Die Studierenden erhalten eine enge und fachkundige Betreuung durch erfahrene Forschende.
  • Projektkontext: Die Arbeit ist in einen aktuellen, praxisnahen Forschungskontext mit industriellem Anwendungsbezug eingebunden.
  • Ressourcen: Notwendige Hardware- und Software-Ressourcen entsprechen den gängigen Lösungen der Universität, einschließlich Zugang zu wissenschaftlichen Datenbanken und Standardsoftware für Datenanalyse und Textverarbeitung.

Arbeitsweise: Die Arbeitsweise kann flexibel gestaltet werden (Hybrid-Modell oder Remote-Arbeit nach Absprache), wobei regelmäßige Abstimmungen und der Austausch mit dem Betreuungsteam sichergestellt sind.

[PT/MT] Geo-Modeling and Assessment of Global Production Networks

Background

Modern production and supply networks span multiple continents, combining various transport modes (road, sea, rail, air). Understanding the geographical structure, costs, and environmental impacts of these logistics routes is key to designing resilient and sustainable global value chains. This thesis contributes to a research project on modeling and optimizing international production networks. The focus lies on geo-spatial modeling of transport flows, calculation of transport costs and emissions, and interactive visualization of global supply routes.

Objectives

Develop a geo-based Python model that:

  • Maps realistic transport routes between global production and assembly sites,
  • Calculates transport distances, costs, and CO₂ emissions based on real data,
  • Visualizes results interactively on a world map (e.g., using folium or geopandas).

Main Tasks

Data Collection and Preparation

  • Identify suitable open geospatial datasets (e.g., Global Shipping Lanes, OpenStreetMap).
  • Gather emission and transport cost factors (e.g., from the GLEC Framework).

Model Development

  • Implement routing and distance calculations for combined transport modes.
  • Compute costs and CO₂ emissions for selected routes or network scenarios.

Visualization and Analysis

  • Create an interactive geo-visualization of the modeled network.
  • Document assumptions, data sources, and main findings.

Requirements

  • Ongoing studies at FAU
  • Good programming skills in Python
  • Experience with data analysis and mapping tools (pandas, geopandas, folium) preferred
  • Interest in global production networks, sustainability, and data-driven modeling

Tools / Frameworks

  • Python (pandas, geopandas, folium, shapely)
  • Open geospatial data (OpenStreetMap, Global Shipping Lanes, etc.)
  • Emission frameworks such as GLEC Framework

Type of Thesis

  • Final Thesis (Bachelor / Master)
  • Type: Theoretical thesis / Systematic literature review
  • Start date: flexible

Please send your complete application documents (short cover letter, work/internship certificates, and current transcript of records) to: baris.albayrak@faps.fau.de

 

I look forward to hearing from you!

[MA] Datenbasierte Früherkennung externer Schocks in industriellen Wertschöpfungsnetzwerken

Ausgangssituation

Produzierende Unternehmen sehen sich zunehmend externen Schocks ausgesetzt, etwa durch geopolitische Ereignisse, Naturereignisse, Marktveränderungen oder externe IT-Störungen. Diese beeinflussen Lieferketten und Produktionsprozesse oft unmittelbar, sind jedoch in vielen Fällen bereits frühzeitig in Daten erkennbar. Ein systematisches, interorganisationales Frühwarnkonzept ist in der Praxis jedoch selten vorhanden.

Aufgabenstellung

Ziel der Arbeit ist die Entwicklung eines Risikofrühwarn-Frameworks, das Unternehmen bei der Erkennung und Bewertung externer Schocks unterstützt. Ergänzend soll ein Python-basierter Prototyp entstehen, der anhand von Dummy- oder Open-Data zentrale Frühindikatoren visualisiert und eine interaktive Entscheidungsunterstützung ermöglicht.

Die Arbeit gliedert sich grob wie folgt:

  1. Analyse bestehender Ansätze zu externen Schocks, Supply-Chain-Risiken und relevanten Datenquellen.
  2. Kategorisierung externer Schockarten und Identifikation typischer Frühindikatoren.
  3. Entwicklung eines interorganisationalen Risikofrühwarn-Frameworks mit klaren Rollen, Prozessen und Datenflüssen.
  4. Entwicklung eines Python-Dashboards (Decision-Support) zur Visualisierung und Szenarienanalyse.
  5. Demonstration und Evaluation anhand ausgewählter Beispielschocks.

Vorkenntnisse/Voraussetzungen:

  • Interesse an Risiko-, Lieferketten- oder Produktionsmanagement
  • Fähigkeit zu wissenschaftlicher Analyse und Modellbildung
  • Grundkenntnisse in Python (Datenanalyse / Visualisierung)
  • Strukturierte und selbstständige Arbeitsweise

Tools / Frameworks:

Python, Jupyter Notebook oder VS Code; optional Process-Mining- oder ML-Bibliotheken.
Methodischer Rahmen: Design Science Research

Type of Thesis:

Masterarbeit (ca. 6 Monate)
Framework-Entwicklung mit prototypischer Umsetzung.

Studiengänge:

Wirtschaftsingenieurwesen, Maschinenbau, Wirtschaftsinformatik, Informatik, Data Science, Artificial Intelligence, Mechatronik.

Bewerbung:

Die Arbeit kann ab sofort bearbeitet werden. Bewerbungen bitte per Mail mit Lebenslauf und aktuellem Notenauszug an untenstehenden Kontakt, Adrian Müller mit Baris Albayrak in CC, richten.

[BA/PA/MA] Entwicklung eines semantischen Capability-Modells zur resilienten Produktionsorchestrierung

Ausgangssituation:

In einer von raschem Wandel und technologischer Turbulenz geprägten Welt müssen sich Unternehmen flexibel an veränderte Umstände anpassen.
Dabei spielen resiliente Produktionsabläufe und -systeme eine entscheidende Rolle. Neben der Neuplanung (Greenfield) von Produktionslinien
stellt insbesondere die Umstrukturierung bestehender Anlagen (Brownfield) eine Herausforderung dar. Dabei müssen jeweils die Möglichkeiten zur Flexibilisierung berücksichtigt werden, um ein
notwendiges Maß an Anpassungsfähigkeit sicherzustellen.

Aufgabenstellung:

In dieser Arbeit soll ein Konzept für ein Capability-Modell zur resilienten Produktionsorchestrierung erarbeitet und modelliert werden, um eine Flexibilisierung von Produktionslinien zu vereinfachen.

Die Arbeit gliedert sich grob wie folgt:

  • Einarbeitung in den Stand der Technik
  • Erarbeitung der wichtigsten Teile der Produktion,
  • Konzeptionierung des Capability-Modells
  • Modellierung in z. B. JSON.
  • Beispielhafte Anwendung in einem Orchestrierungsszenario.
  • Schriftliche Dokumentation der Ergebnisse

Vorkenntnisse/Voraussetzungen:

  • Interesse an industrieller Fertigung und Automatisierung.
  • Selbstständige und strukturierte Arbeitsweise.
  • Gute Dokumentationsfähigkeiten
  • Gute Kenntnisse der deutschen oder englischen Sprache

Weitere Hinweise:

  • Startdatum: ab sofort möglich
  • Homeoffice möglich

Bewerbung:
Bewerbungen bitte mit Lebenslauf, aktueller Fächerübersicht und arbeitsprobe (JSON/XML-File) per E-Mail an: adrian.mueller@faps.fau.de.
Das JSON oder XML-File soll folgende Informationen strukturiert beinhaltet:

  • Der Name des Files soll sich aus der Arbeit (BA,PA oder MA) + “_” + deinem Nachnamen zusammensetzten
  • Das File soll selbstgeschrieben sein
  • Vorname, Nachname, Geburtstag, Geburtsort, Wohnort, besuchte Bildungseinrichtungen, mindestens fünf besuchte Fächer mit Note pro Bildungseinrichtung und alle Sprachen mit Level.

Für weitere Informationen über den Umfang und die genaue Ausrichtung der Arbeit stehe ich gerne für ein persönliches Gespräch zur Verfügung.

[BA/PA/MA] Potentialalyse zum Gleichstrombetrieb einer Wellpappenanlage

Anlagen zur Herstellung von Wellpappe verfügen über eine Vielzahl von drehzahlsynchronisierten elektrischen Antrieben.

Im Stand der Technik erfolgt die Energieversorgung und Ansteuerung über Umrichter, welche Energie aus dem Wechselstromnetz beziehen und überschüssige Energie in Bremswiderständen in Wärme umwandeln.

Durch die Umstellung auf Gleichstrom (DC) in Produktionsanlagen können erhebliche Vorteile erzielt werden, insbesondere in Bezug auf Energieeffizienz, Materialersparnis und Systemstabilität. DC-basierte Systeme ermöglichen eine flexiblere Energienutzung, höhere Wirkungsgrade und ermöglichen die Rückspeisung vom Bremsenergie (Rekuperation).

Ziel der Arbeit:

Im Rahmen der Arbeit sollen die Energie- und Materialeinsparpotenziale durch den Einsatz eines DC-Netzes mit zentralem DC-Bus zur Versorgung der drehzahlvariablen Antriebe einer Maschine zur Herstellung von Wellpappe evaluiert werden. Die Möglichkeit zur Nutzung von Bremsenergie durch Rekuperation soll geprüft werden.

Arbeitspakete:

  • Analyse des Ist-Zustands: Besichtigung einer Anlage beim Industriepartner und sammeln der nötigen Daten aus den Technischen Dokumentationen, Einführung in den DC-Demonstrator am FAPS, Einlesen in die Fachliteratur
  • Konzeption einer DC-Maschine: Auswahl geeigneter DC-fähiger Umrichter, Auslegung des DC-Netzes; Analyse der Lastprofile der Motoren zur Evaluation des Einsatzes von Rekuperation
  • Bewertung der Einsparpotenziale: Quantifizierung der Energiesparpotenziale auf Basis von Literatur oder eigener Laborversuche, Identifikation und Quantifizierung der Materialeinsparpotenziale

Anforderungen:

  • Kenntnisse in Elektrotechnik, idealerweise mit Bezug zur DC-Technologie und Energieeffizienz in Produktionsumgebungen von Vorteil
  • Selbstständige und strukturierte Arbeitsweise
  • Gute Deutsch- und Englischkenntnisse in Wort und Schrift

 

 

It’s Clusterin’ Time! Realisierung eines Mixed-SBC-Clusters für die Edge (BA/PA/MA)

Der Einsatz von Edge Computing gewinnt in vielen Bereichen an Bedeutung, da er die Datenverarbeitung näher an den Ort der Datenentstehtung verlagert. Ein Mixed-SBC-Cluster, der verschiedene Single Board Computer (SBC) wie Nvidia Jetson und Raspberry Pi umfasst, bietet eine ausgezeichnete Plattform, um die Herausforderungen und Möglichkeiten des Edge Computings zu erproben und zu demonstrieren.

Ziel ist die Entwicklung eines Mixed-SBC-Clusters für die Edge, der als experimentelle Plattform in industrienaher Forschung und für Lehrzwecke im Automatisierungsumfeld dient. Dieser Cluster soll die Heterogenität realer IT-Infrastrukturen widerspiegeln und das Sammeln praktischer Erfahrungen mit Cluster-Management, verteilten Speichersystemen und der Integration von Erweiterungsmodulen (z.B. Funkmodul, Neural Processing Unit und Field Programmable Gate Array) eröffnen.

(Mögliche) Schwerpunkte der Arbeit:

  • Aufbau und Konfiguration eines heterogenen SBC-Clusters für Edge Computing Szenarien.
  • Einsatz eines Cluster-Management-Systems und Implementierung eines Service Mesh.
  • Einsatz von Automatisierungswerkzeugen und Infrastruktur-as-Code (IaC) zur effizienten Verwaltung und Konfiguration.
  • Implementierung eines Lifecycle-Managements des Betriebs bestehend aus Monitoring, Sicherung, Wartung und Aktualisierung.
  • Integration von Storage-Lösungen und spezifischen Erweiterungsmodulen für verschiedene Anwendungsfälle.
  • Integration in Anwendungsfälle der Automatisierungstechnik in industriellen Produktionsanlagen, der Gebäudeautomatisierung und insbesondere des Energiemanagements.
  • Beitrag zum Transfer in die Lehre als Praktikumsversuch oder Übungseinheit

Wenn die ausgeschriebene Arbeit noch online ist, dann ist sie auch noch aktuell. Sollten Sie Interesse an der Arbeit haben, so kommen Sie bitte mittels einer E-Mail und einem kurzen Essay (ein One Pager genügt) auf mich zu. Sollten Sie eine intrinsische Motivation für ein angrenzendes oder ähnlichen Thema haben, so stellen Sie in Ihrer Anfrage bitte den Bezug zu meiner Ausschreibung dar.

Bitte stellen Sie die komplette Anfrage in deutscher Sprache, auch wenn Sie die Ausarbeitung in Englisch verfassen werden wird. Hintergrund ist, dass Sie sich in laufende Forschungsprojekte einbringen sowie mit den Projektpartnern (auch kleinere und mittelständische Unternehmen) austauschen können sollen und von diesen wird mehrheitlich eine Kommunikation auf Deutsch gewünscht.

Weitere Informationen erhalten Sie auf Anfrage, der Arbeitsumfang kann entsprechend der Arbeit angepasst werden und die Bearbeitung weitestgehend im Home-Office stattfinden.

[BA/PA/MA] Adaptive Agentensysteme: Struktur, Lernen und Kommunikation in dynamischen Umgebungen

Hintergrund:

In der Entwicklung intelligenter Produktions- und Logistiksysteme nehmen autonome, vernetzte Agenten eine Schlüsselrolle ein. Um komplexe Aufgaben effizient zu bewältigen, müssen diese Systeme nicht nur lernen, sondern auch ihre interne Struktur und Kommunikation dynamisch anpassen können. Ziel dieser Arbeit ist es, in einer simulativen Testumgebung verschiedene Konzepte für Agentenarchitektur, Lernen und Interaktion zu erforschen und methodisch zu evaluieren.

Ziel der Arbeit:

Entwicklung und Analyse eines simulationsbasierten Multi-Agenten-Systems mit einem von drei Schwerpunkten:

Themenoption 1: Atomare Agentenstrukturen & Rollenverteilung mit Fokus auf Architektur und Organisation

  • Modellierung von Agenten als “Atome” mit vernetzbaren Rollen (z. B. Spezialist, Manager)
  • Dynamische Bildung von Systemstrukturen über agentenbasierte Verknüpfungslogik
  • Aufbau und Visualisierung eines Agentennetzwerks
  • Konzeption einer “Agentenbörse” zur strukturierten Verknüpfung

Themenoption 2: Meta-Learning im Reinforcement Learning mit Fokus auf Lernen & Adaption

  • Vergleich klassischer RL-Methoden mit Meta-Learning-Ansätzen (z. B. MAML, Reptile)
  • Simulation eines adaptiven Agenten in einer rudimentären Umgebung (x, y, dx, dy)
  • Bewertung der Anpassungsfähigkeit in dynamischen Zielsystemen
  • Analyse von Vor- und Nachteilen des Meta-Learnings

Themenoption 3: Spieltheorie in Multi-Agenten-Kommunikation mit Fokus auf Kooperation & Täuschung

  • Interaktion durch „Horizont“/Ziel-Überschneidungen und Kommunikation zwischen Agenten
  • Modellierung von Täuschern und Strategien zur Erkennung
  • Integration spieltheoretischer Konzepte wie Vertrauen, Betrug, Kooperation
  • Aufbau eines agentenbasierten Kommunikations- und Bewertungssystems

Vorgehensweise:

  • Einarbeitung in Multi-Agenten-Systeme und Reinforcement Learning
  • Auswahl und Ausarbeitung eines der drei Schwerpunktbereiche
  • Aufbau eines simulativen Testsystems (z. B. mit Python)
  • Implementierung und Evaluation der entwickelten Ansätze
  • Dokumentation und Diskussion der Ergebnisse

Anforderungen an Studierende:

  • Strukturierte, selbstständige Arbeitsweise
  • Erfahrung im wissenschaftlichen Arbeiten sowie in der Durchführung von Literaturrecherchen
  • Gute Dokumentationsfähigkeit
  • Fortgeschrittene Kenntnisse in Python
  • Grundkenntnisse KI, Multi-Agentensystemen oder maschinellem Lernen

Bewerbung:

Bewerbungen bitte mit Lebenslauf und aktueller Fächerübersicht per E-Mail an Luca.Werthmann@faps.fau.de

[BA/MA] Bestimmung und Auswirkung der Restwelligkeit von Gleichrichtern auf die Funktionsfähigkeit nachgeschalteter Gleichstromsysteme

Zahlreiche für den Betrieb kritische elektrische Systeme der Deutschen Bahn wie beispielsweise Weichen, Signale und Achszähler werden in einem separaten Gleichstromkreis betrieben. Innerhalb eines dieses Stromkreises sind zudem Batteriesysteme parallelgeschaltet, die im Falle eines Stromausfalls oder Ausfall eines Gleichrichters unmittelbar als Notstromversorgung einspringen. Im Regelbetrieb sind die Batteriesysteme dauerhaft im sog. Ladeerhaltungsmodus eingebunden.
Der für die Systeme benötigte Gleichstrom wird über Wechselrichter aus der Netzspannung gewandelt, die klassischerweise ein 50Hz-Wechselstromnetz darstellt. Aufgrund der Art und Weise der Gleichrichtung bleibt – je nach Typ und Alter des Gleichrichters – eine mehr oder minder hohe Restwelligkeit im Gleichstromkreis bestehen. Ein wenig untersuchtes Gebiet ist die Auswirkung von Restwelligkeiten auf die oben beschriebenen Gleichstromsysteme, die teilweise empfindlich auf bereits leichte Spannungsschwankungen reagieren. Aktuell existiert nur stichprobenartige Evidenz, dass Systeme aufgrund von Restwelligkeiten frühzeitig ausfallen oder ihre Lebensdauer signifikant verkürzt wird.
In der zu bearbeitende studentische Arbeit soll zunächst an unterschiedlichen Standorten gemessen, die Daten ausgewertet und letztendlich Rückschlüsse auf den Einfluss auf die Gleichstromsysteme gezogen werden. Stellt sich heraus, dass Restwelligkeit einen hohen Einfluss besitzt, soll diese zukünftig regelmäßig gemessen und frühzeitig bei Grenzwertüberschreitungen gewarnt werden. Im Rahmen der Arbeit bist Du direkt eingebunden in die Weiterentwicklung für ein Frühwarn- und Diagnosesystem der Instandhaltung.

Was ist der Inhalt der Arbeit?

  • Arbeite dich in die Funktionsweise von elektrischen Versorgungssystemen von Stellwerken und nachgeschalteten Gleichstromsystemen ein.
  • Erarbeite den theoretischen Hintergrund der Entstehung von Restwelligkeiten an Gleichrichtersystemen und den Einfluss auf nachgeschaltete Systeme.
  • Entwirf eine Messstrategie zur Messung von Restwelligkeit.
  • Erfasse die Restwelligkeit von Stromversorgungssystemen in Stellwerken an mehreren Standorten für einen umfassenden Überblick über die aktuelle Situation.
  • Vergleiche die Messdaten mit dem Zustand der eingebundenen Systeme wie z.B. Typen oder Generationen von Stellwerken und bewerte den Einfluss auf diese.
  • Bestimme die Anforderungen an einen Grenzwert oder Indikator, den ein potenzielles Messgerät zur Messung von Restwelligkeiten erfassen muss, um eine Aussage über die Lebensdauer von Gleichstromsystemen zu treffen.

Was erwartet dich?

  • Arbeite im engen Kontakt mit der DB InfraGO und anderen DB Unternehmen und erhalte einen direkten Einblick die Technik in Stellwerken, die unsere Infrastruktur am Laufen hält.
  • Erhalte einen tiefen Einblick in die Funktionsweisen von Stellwerken und angeschlossenen Systemen.
  • Tritt in den Austausch mit Fachexperten im Bereich Energieversorgung bei der Deutschen Bahn.
  • Sei eingebunden in ein praxis- und ergebnisrelevantes Projekt zur Erhöhung der Verfügbarkeit von Systemen der Deutschen Bahn und gestalte unmittelbar mit.

Was bringst du mit?

  • Du beweist Flexibilität in der Absprache mit Personal an den Standorten und hast ein proaktives Auftreten gegenüber Verantwortlichen.
  • Du bist bereit für Reisetätigkeiten, um an unterschiedlichen Standorten in Deutschland Messungen vorzunehmen.
  • Du hast gute Deutschkenntnisse in Wort und Schrift.

Haben wir dein Interesse geweckt oder hast du noch Rückfragen? Wir freuen uns auf deine Anfrage.

Kontakt:
Andreas Reichle (HOREICH GmbH)
andreas.reichle@horeich.de
+49 9131 9234042