Index
Abschlussarbeit zu autonomen Drohnen

Drohnen werden in unterschiedlichsten Gebieten der Industrie eingesetzt, unter anderem zum Materialtransport in der Intralogistik oder zur Erfassung digitaler Lagebilder.
Für den effizienten und sicheren Einsatz ist es wünschenswert, dass die Drohnen ihre Aufgaben selbstständig erledigen, also autonom agieren. Durch den autonomen Betrieb wird es möglich mithilfe geeigneter Navigation die Drohnen beispielsweise hinsichtlich ihres Energieverbrauchs zu optimieren. Hierfür ist die Erforschung robotischer Infrastrukturen (Robot Operating System 2), Computer-Vision, neuartiger KI-Modelle und Reinforcement Learning erforderlich. Zudem sind Hardwareaspekte, wie ein stabiler Aufbau des Flugroboters sowie die Ausstattung mit entsprechender Sensorik zu beachten.
Am Flugfeld des Lehrstuhl FAPS sind verschiedene Themen für Bachelor- und Masterarbeiten in den oben genannten Bereichen zu vergeben. Voraussetzung ist die Motivation zur selbständigen Einarbeitung in die Programmierung von Flugrobotern. Weitere Informationen erhalten Sie auf Anfrage per E-Mail.
Hinweise zur Bewerbung
- Erste Erfahrung und Freude an der Programmierung erforderlich
- Vorkenntnisse mit ROS2 sind von Vorteil
- Gute Englischkenntnisse erforderlich
- Sehr gute Deutscherkenntnisse erforderlich (mind. C1)
- Selbstständige Arbeitsweise
- Zeitnaher Beginn möglich
- Bewerbungen bitte per E-Mail mit aktueller Notenübersicht und Lebenslauf
- Bitte beachten Sie, dass unvollständige Bewerbungen nicht berücksichtigt werden
[BA/MA] Bestimmung und Auswirkung der Restwelligkeit von Gleichrichtern auf die Funktionsfähigkeit nachgeschalteter Gleichstromsysteme

Zahlreiche für den Betrieb kritische elektrische Systeme der Deutschen Bahn wie beispielsweise Weichen, Signale und Achszähler werden in einem separaten Gleichstromkreis betrieben. Innerhalb eines dieses Stromkreises sind zudem Batteriesysteme parallelgeschaltet, die im Falle eines Stromausfalls oder Ausfall eines Gleichrichters unmittelbar als Notstromversorgung einspringen. Im Regelbetrieb sind die Batteriesysteme dauerhaft im sog. Ladeerhaltungsmodus eingebunden.
Der für die Systeme benötigte Gleichstrom wird über Wechselrichter aus der Netzspannung gewandelt, die klassischerweise ein 50Hz-Wechselstromnetz darstellt. Aufgrund der Art und Weise der Gleichrichtung bleibt – je nach Typ und Alter des Gleichrichters – eine mehr oder minder hohe Restwelligkeit im Gleichstromkreis bestehen. Ein wenig untersuchtes Gebiet ist die Auswirkung von Restwelligkeiten auf die oben beschriebenen Gleichstromsysteme, die teilweise empfindlich auf bereits leichte Spannungsschwankungen reagieren. Aktuell existiert nur stichprobenartige Evidenz, dass Systeme aufgrund von Restwelligkeiten frühzeitig ausfallen oder ihre Lebensdauer signifikant verkürzt wird.
In der zu bearbeitende studentische Arbeit soll zunächst an unterschiedlichen Standorten gemessen, die Daten ausgewertet und letztendlich Rückschlüsse auf den Einfluss auf die Gleichstromsysteme gezogen werden. Stellt sich heraus, dass Restwelligkeit einen hohen Einfluss besitzt, soll diese zukünftig regelmäßig gemessen und frühzeitig bei Grenzwertüberschreitungen gewarnt werden. Im Rahmen der Arbeit bist Du direkt eingebunden in die Weiterentwicklung für ein Frühwarn- und Diagnosesystem der Instandhaltung.
Was ist der Inhalt der Arbeit?
- Arbeite dich in die Funktionsweise von elektrischen Versorgungssystemen von Stellwerken und nachgeschalteten Gleichstromsystemen ein.
- Erarbeite den theoretischen Hintergrund der Entstehung von Restwelligkeiten an Gleichrichtersystemen und den Einfluss auf nachgeschaltete Systeme.
- Entwirf eine Messstrategie zur Messung von Restwelligkeit.
- Erfasse die Restwelligkeit von Stromversorgungssystemen in Stellwerken an mehreren Standorten für einen umfassenden Überblick über die aktuelle Situation.
- Vergleiche die Messdaten mit dem Zustand der eingebundenen Systeme wie z.B. Typen oder Generationen von Stellwerken und bewerte den Einfluss auf diese.
- Bestimme die Anforderungen an einen Grenzwert oder Indikator, den ein potenzielles Messgerät zur Messung von Restwelligkeiten erfassen muss, um eine Aussage über die Lebensdauer von Gleichstromsystemen zu treffen.
Was erwartet dich?
- Arbeite im engen Kontakt mit der DB InfraGO und anderen DB Unternehmen und erhalte einen direkten Einblick die Technik in Stellwerken, die unsere Infrastruktur am Laufen hält.
- Erhalte einen tiefen Einblick in die Funktionsweisen von Stellwerken und angeschlossenen Systemen.
- Tritt in den Austausch mit Fachexperten im Bereich Energieversorgung bei der Deutschen Bahn.
- Sei eingebunden in ein praxis- und ergebnisrelevantes Projekt zur Erhöhung der Verfügbarkeit von Systemen der Deutschen Bahn und gestalte unmittelbar mit.
Was bringst du mit?
- Du beweist Flexibilität in der Absprache mit Personal an den Standorten und hast ein proaktives Auftreten gegenüber Verantwortlichen.
- Du bist bereit für Reisetätigkeiten, um an unterschiedlichen Standorten in Deutschland Messungen vorzunehmen.
- Du hast gute Deutschkenntnisse in Wort und Schrift.
Haben wir dein Interesse geweckt oder hast du noch Rückfragen? Wir freuen uns auf deine Anfrage.
Kontakt:
Andreas Reichle (HOREICH GmbH)
andreas.reichle@horeich.de
+49 9131 9234042
BA/PA/MA: Semantisches Scene-Graph-Mapping für autonome mobile Roboter

Moderne mobile Roboter benötigen semantisch reiche Umgebungsdarstellungen, um autonom und effizient agieren zu können. Semantische Scene Graphs bieten eine hierarchische Repräsentation, die Geometrie, Objekte und deren Beziehungen abbildet – ein Ansatz, der auch die Strukturierung simulierter Umgebungen erheblich verbessern kann. Ziel dieser Arbeit ist es, aktuelle Ansätze zum semantischen Scene-Graph-Mapping zu implementieren, systematisch zu vergleichen und Ergebnisse statistisch zu analysieren, um so Erkenntnisse für die Gestaltung realistischer Simulationsumgebungen zu gewinnen.
Aufgabenstellung
- Einarbeitung und Literaturrecherche
- Übersicht und Bewertung aktueller Ansätze zum semantischen Scene-Graph-Mapping (z. B. Hydra, Clio, ConceptGraphs)
- Ggf. Einarbeitung in ROS/ROS2 sowie in gängige Simulationsumgebungen (z. B. Isaac Sim, Blender)
- Implementierung und Vergleich
- Umsetzung ausgewählter Mapping-Methoden
- Vergleich der Methoden hinsichtlich Echtzeitfähigkeit, Genauigkeit, Skalierbarkeit und offener Semantik
- Statistische Analyse
- Extraktion und Auswertung typischer räumlicher und semantischer Muster aus den generierten Scene Graphs
- Ableitung von Kriterien zur strukturierten Gestaltung simulierter Umgebungen
- Ableitung neuer Konzepte (je nach Art der Arbeit)
- Entwicklung und Evaluierung von Verbesserungen oder neuen Ansätzen basierend auf den gewonnenen Analyseergebnissen
- Training neuer KI-Modelle zur Gestaltung simulierter Umgebungen
Vorkenntnisse
- Grundlegende Programmierkenntnisse
- Kenntnisse in mobiler Robotik und ROS2 von Vorteil, aber nicht zwingend erforderlich
- Sehr gute Deutsch- und Englischkenntnisse
- Motivation und eigenständige Arbeitsweise
Weitere Informationen erhalten Sie gerne in einem persönlichen Gespräch.
Kontaktaufnahme bitte nur per E-Mail an christopher.may@faps.fau.de einschließlich aussagekräftiger Unterlagen (Lebenslauf, vollständige Notenübersicht).
Der Arbeitsumfang kann entsprechend der Art der Abschlussarbeit angepasst werden.
[PA/MA] Dynamische Modellierung des Rückführungs- und Recyclingprozesses von Traktionsbatterien im Nutzfahrzeugsektor

Im Zuge der Mobilitätswende und des steigenden Bedarfs an elektrifizierten Antriebssystemen gewinnen Batterien als zentrale Komponenten zunehmend an strategischer Bedeutung. Insbesondere im Bereich der leichten und schweren Nutzfahrzeuge entstehen neue Herausforderungen entlang der gesamten Wertschöpfungskette – von der Rohstoffbeschaffung über Produktion und Nutzung bis hin zur Rückführung und Wiederverwertung. Der Recyclingprozess von Traktionsbatterien spielt dabei eine entscheidende Rolle für Nachhaltigkeit, Ressourceneffizienz und Versorgungssicherheit.
Die Supply Chain des Batterie-Recyclings ist hochkomplex: unterschiedliche Zellchemien, unklare Rücklaufmengen, logistischer Aufwand, technologische Unsicherheiten sowie regulatorische Vorgaben beeinflussen die Rückführung und Wiederverwertung erheblich. Traditionelle Analysewerkzeuge stoßen hier an ihre Grenzen. Die Methode der System Dynamics bietet hingegen die Möglichkeit, dynamische Zusammenhänge, Rückkopplungen und zeitverzögerte Effekte transparent zu modellieren und zu simulieren.
Ziele der studentischen Arbeit
-
Vertiefung der Kenntnisse in der Systemtheorie, insbesondere im Bereich System Dynamics
-
Durchführung einer fundierten Literaturrecherche zu Batterieproduktion, Rückführung und Recycling im Mobilitätssektor, insbesondere bei Nutzfahrzeugen
-
Analyse der technischen, logistischen und organisatorischen Prozesse entlang der Batterie-Supply-Chain
-
Identifikation und Modellierung relevanter Akteure, Materialflüsse, Einflussfaktoren und Wirkzusammenhänge im Batterie-Recyclingprozess
-
Aufbau eines dynamischen Simulationsmodells zur Abbildung des Batterie-Recyclings unter Einsatz von System Dynamics
-
Ableitung von Erkenntnissen zur Optimierung der Recyclingstrategie für leichte und schwere Nutzfahrzeuge
Voraussetzungen
-
Hohes Interesse an nachhaltiger Mobilität, Kreislaufwirtschaft und Batteriesystemen
-
Bereitschaft, sich intensiv mit System Dynamics auseinanderzusetzen
-
Idealerweise erste praktische Erfahrungen mit Modellierungs- oder Simulationssoftware (z. B. Vensim, AnyLogic, Stella o. Ä.)
-
Grundkenntnisse in Programmierung (z. B. Python, Java)
-
Sehr gute Deutschkenntnisse (mindestens Niveau C1) und gute Englischkenntnisse
-
Selbstständige und strukturierte Arbeitsweise
-
Verpflichtende Ergebnispräsentation und -diskussion im Seminar
Die studentische Arbeit kann ab dem 01.05.2025 oder zu einem späteren, individuell vereinbarten Zeitpunkt begonnen werden und ist innerhalb des in der Prüfungsordnung festgelegten Bearbeitungszeitraums abzuschließen.
Die Arbeit kann als Projekt- oder Masterarbeit verfasst werden.
Bei Interesse senden Sie bitte eine E-Mail mit Lebenslauf und Notenspiegel an
📧 baris.albayrak@faps.fau.de
Ich freue mich auf Ihre Bewerbung!
PA/MA: Studentische Arbeit im Bereich System Dynamics

Im Zuge der Digitalisierung übernehmen digitale Plattformen wie AWS oder Wucato eine zunehmend zentrale Rolle entlang der industriellen Wertschöpfungsketten. Aufgrund ihres weitreichenden Einflusses auf Unternehmensprozesse, Märkte, politische Entscheidungen und gesellschaftliche Strukturen gelten Plattformökonomien als potenziell wertstiftende Organisationsformen der industriellen Wertschöpfung. Die Wechselwirkungen zwischen den vielfältigen Akteuren und Einflussfaktoren, die die Funktionsmechanismen digitaler Plattformen prägen, charakterisieren diese als komplexe sozio-technische Systeme.
Traditionelle Analysewerkzeuge wie die Wertstromanalyse oder BPMN stoßen bei der Abbildung der Dynamik solcher Systeme jedoch an ihre Grenzen. Gleichzeitig ist eine systematische Modellierung der verschiedenen Rollen, Mechanismen, Prozesse und Funktionen auf digitalen Plattformen essenziell, um ein umfassendes und konsistentes Verständnis dieser Systeme zu ermöglichen. In diesem Zusammenhang zeigt die Methode der System Dynamics großes Potenzial, die Komplexität digitaler Plattformen in der Industrie adäquat zu erfassen und abzubilden.
Ziele der studentischen Arbeit
- Vertiefung der Kenntnisse in der Systemtheorie, insbesondere im Bereich System Dynamics
- Durchführung einer umfassenden Literaturrecherche zu industriellen Plattformen und zur Methodik von System Dynamics
- Entwicklung eines technischen und organisatorischen Verständnisses digitaler Plattformen
- Identifikation und Analyse der beteiligten Rollen, Funktionen, Wirkmechanismen sowie der Wertschöpfungsschritte digitaler Plattformen
- Bewertung der Eignung von System Dynamics zur Analyse komplexer Plattformökonomien im industriellen Kontext
Voraussetzungen
- Hohe Motivation und Interesse an der Mitwirkung bei aktueller, interdisziplinärer und industrienaher Forschung
- Bereitschaft, sich intensiv in die Systemtheorie und speziell in System Dynamics einzuarbeiten
- Idealerweise erste praktische Erfahrungen in der Simulation von Wertschöpfungssystemen (z. B. mit Tools wie Siemens Plant Simulation oder AnyLogic)
- Solide Programmierkenntnisse in gängigen Programmiersprachen wie Python oder Java
- Sehr gute Deutschkenntnisse (mindestens Niveau C1) und gute Englischkenntnisse
Die studentische Arbeit ist ab dem 01.02.2025 oder zu einem späteren, individuell vereinbarten Zeitpunkt zu beginnen und innerhalb des in der Prüfungsordnung festgelegten Bearbeitungszeitraums abzuschließen.
Die Arbeit kann als Projekt- oder Masterarbeit verfasst werden.
Bei Interesse senden Sie mir eine E-Mail mit Lebenslauf und Notenspiegel an baris.albayrak@faps.fau.de.
Ich freue mich auf Ihre Bewerbung!
Induktives Laden: Konzeption und Entwicklung von Prozessen zur automatisierten Produktion induktiver Energieübertragungssysteme (BA/PA/MA)

Ausgangslage:
Mit der fortschreitenden Elektrifizierung der Fahrzeuge steigt auch die Nachfrage nach komfortablen, sicheren und in den Alltag integrierbaren Lademöglichkeiten. Kontaktlose Energieübertragungssysteme ermöglichen Szenarien wie „Road Charging“ und „Opportunity Charging“. Weitere Vorteile sind ein gesteigerter Ladekomfort für den Anwender sowie eine geringere Angriffsfläche für Vandalismus. Folglich ist für die nächsten Jahre eine gesteigerte Nachfrage nach induktiven Energieübertragungssystemen für Elektromobile zu erwarten. Allerdings stehen bislang keine Verfahren zur Verfügung, die eine wirtschaftliche Fertigung induktiver Energieübertragungssysteme in hoher Stückzahl ermöglichen.
Mögliche Aufgabenstellung
Verlegen, Kontaktieren und Isolieren sind die drei wichtigsten Schritte zur Herstellung eines induktiven Energieübertragungssystems. Die Verfahren sollen durch geeignete Maßnahmen für die industrielle Fertigung befähigt werden. Neben praktischen Versuchen ist auch der prototypische Aufbau von Demonstratoren vorgesehen. Mögliche Aufgabenstellungen können sein:
- Einarbeiten in die Technologien für die kontaktlose Energieübertragung
- Analyse von verschiedenen Systemaufbauten der Marktbegleiter
- Adaption bestehender Konzepte aus dem Elektromaschinenbau auf den neuen Anwendungskontext
- Entwicklung und Konzeption geeigneter Vorrichtungen und Aufbau von Demonstratorsystemen
Hinweise und Bewerbung:
- Bearbeitung der Aufgaben im studentischem Team
- Strukturierte und selbstständige Arbeitsweise
- Bewerbungen bitte per E-Mail mit Lebenslauf und aktueller Fächerübersicht an info@seamless-energy.com
Ansprechpartner:
Maximilian Kneidl, M.Sc. info@seamless-energy.com
Michael Masuch
Induktives Laden: Konzeption und Entwicklung von Prozessen zur automatisierten Produktion induktiver Energieübertragungssysteme (BA/PA/MA)

Ausgangslage:
Mit der fortschreitenden Elektrifizierung der Fahrzeuge steigt auch die Nachfrage nach komfortablen, sicheren und in den Alltag integrierbaren Lademöglichkeiten. Kontaktlose Energieübertragungssysteme ermöglichen Szenarien wie „Road Charging“ und „Opportunity Charging“. Weitere Vorteile sind ein gesteigerter Ladekomfort für den Anwender sowie eine geringere Angriffsfläche für Vandalismus. Folglich ist für die nächsten Jahre eine gesteigerte Nachfrage nach induktiven Energieübertragungssystemen für Elektromobile zu erwarten. Allerdings stehen bislang keine Verfahren zur Verfügung, die eine wirtschaftliche Fertigung induktiver Energieübertragungssysteme in hoher Stückzahl ermöglichen.
Mögliche Aufgabenstellung
Verlegen, Kontaktieren und Isolieren sind die drei wichtigsten Schritte zur Herstellung eines induktiven Energieübertragungssystems. Die Verfahren sollen durch geeignete Maßnahmen für die industrielle Fertigung befähigt werden. Neben praktischen Versuchen ist auch der prototypische Aufbau von Demonstratoren vorgesehen. Mögliche Aufgabenstellungen können sein:
- Einarbeiten in die Technologien für die kontaktlose Energieübertragung
- Analyse von verschiedenen Systemaufbauten der Marktbegleiter
- Adaption bestehender Konzepte aus dem Elektromaschinenbau auf den neuen Anwendungskontext
- Entwicklung und Konzeption geeigneter Vorrichtungen und Aufbau von Demonstratorsystemen
Hinweise und Bewerbung:
- Bearbeitung der Aufgaben im studentischem Team
- Strukturierte und selbstständige Arbeitsweise
- Bewerbungen bitte per E-Mail mit Lebenslauf und aktueller Fächerübersicht an info@seamless-energy.com
Ansprechpartner:
BA/PA/MA: Studentische Arbeit zur CO2-Neutralen Fabrik

Über uns:
Im Zuge der Energiewende erforschen wir hybride Netzstrukturen, die Gleichstrom- und Wechselstromtechnologien vereinen und so die Vorteile beider Versorgungsstrategien nutzen. Unser Team arbeitet an einem hochmodernen DC-Demonstrator, der in Kooperation mit ca. 40 führenden Industriepartnern der Elektro- und Automatisierungsbranche entwickelt wird. Ziel ist es, innovative Lösungen für eine flexible und energieeffiziente Produktion zu gestalten.
Aufgabenbereiche:
Wir suchen motivierte Studierende zur Unterstützung in verschiedenen Projekten und Aufgaben rund um Gleichstromanwendungen und den Aufbau unserer Demonstratoranlage. Unser Team deckt dabei drei zentrale Anwendungsbereiche ab, in denen du deine Kompetenzen einbringen und vertiefen kannst:
- Aufbau und Inbetriebnahme des Demonstrators:
- Unterstützung bei der technischen Montage und Einrichtung von Gleichstromkomponenten, Automatisierungssystemen und Speichersystemen.
- Programmierung des Automatisierungssystems und intelligenten Energiemanagements
- Planung und Durchführung der Inbetriebnahme von Versorgungs-, Speicher- und Verbrauchereinheiten in einer Laborumgebung
- Mithilfe bei der Fehlerdiagnose und -behebung während des Inbetriebnahmeprozesses.
- Implementierung eines Power-Hardware-in-the-Loop (PHIL) Systems:
- Entwicklung und Integration eines PHIL-Ansatzes, um simulierte Leistungskomponenten in unsere reale Testumgebung einzubinden.
- Konfiguration und Testen der Leistungselektronik und Kopplung mit unserem Gleichstromnetz.
- Durchführung von Messungen und Analysen zur Validierung der Simulationsergebnisse und der Netzstabilität.
- Simulation und Digitaler Zwilling des Demonstrators (Prozess- und Energiebereich):
- Erstellung und Weiterentwicklung von digitalen Zwillingen für die Prozess- und Energiefluss-Simulation unseres DC-Demonstrators.
- Aufbau von Modellen zur realitätsnahen Abbildung des Energiemanagements in hybriden Netzstrukturen.
- Evaluierung und Optimierung des Simulationsmodells zur Verbesserung der Energieeffizienz und Produktionsabläufe.
Zusätzliche Aufgabe: simulationsbasiertes Planungstool
- Mitarbeit an der Weiterentwicklung unseres simulationsbasierten Planungstools
- Entwicklung und Integration von Modulen für die Simulation und Planung von DC-Netzen.
- Unterstützung bei der Erstellung und Validierung von Modellen und Algorithmen, die das DC-Netzwerk planen und optimieren.
Profil:
- Studium der Elektrotechnik, Energietechnik, Mechatronik, Informatik, Maschinenbau oder eines verwandten Fachbereichs.
- Interesse an innovativen Energieversorgungstechnologien, Simulationen oder Automatisierung
- Erste Erfahrungen mit Software-Tools wie TIA Portal, MATLAB/Simulink, Siemens NX, EPLAN oder ähnlichen CAD- und Simulationsprogrammen sind von Vorteil.
- Kenntnisse in der Programmierung und Interesse an Schnittstellentechnologien von Vorteil.
- Selbstständige und strukturierte Arbeitsweise, Teamfähigkeit sowie gute Kommunikationsfähigkeiten.
Was wir bieten:
- Einblicke in die spannende Forschungsarbeit im Bereich Gleichstromnetzwerke und hybride Energienetze.
- Die Möglichkeit, an zukunftsweisenden Projekten in einem engagierten Team mitzuwirken.
- Eigenverantwortliches Arbeiten an realen Projekten mit modernster Technologie.
- Möglichkeit zur persönlichen und fachlichen Weiterentwicklung.
- Kooperation mit führenden und regionalen Industrieunternehmen zur Gleichstromtechnologie.
Das DC-Team am Lehrstuhl besteht aus mehreren Wissenschaftlern und Studierenden, die ihre Arbeiten im Team erledigen und sich gegenseitig unterstützen, weshalb eine Bereitschaft für regen Austausch untereinander gewünscht ist. Auch in dieser Arbeit ist die Vergabe der Arbeitspakete konkurrenzlos in mehrere Teilaufgaben untergliederbar.
Beginn: Ab sofort möglich. Die Position ist als Bachelor- Projekt- oder Masterarbeit verfügbar.
Kontakt:
Interessierte Studierende senden bitte ihre Bewerbungsunterlagen (kurzes Motivationsschreiben und Lebenslauf) an Martin.Barth@faps.fau.de und Benjamin.Gutwald@faps.fau.de
Industriekooperation: Netzintegration und Steuerung eines modularen Ultrakondensatorspeicherschranks mit Test am industriellen Gleichstromnetz

Im Rahmen der Energiewende verlagert sich der Fokus von fossilen Brennstoffen und Atomenergie zu erneuerbaren Energiequellen. Hybride Netzstrukturen aus einer Kombination aus Gleich- und Wechselstrom vereinen die Vorteile beider Versorgungsstrategien. Sie berücksichtigen jede Art von Verbrauchern, Speichern und Erzeugern.
In Kooperation mit über 30 namhaften Partnern der Industrie baut der FAPS in seinen Laborhallen eine Demonstratoranlage mit regenerativen Erzeugern, verschiedenen Speichern und industriellen Verbrauchern auf. Entstandene Simulationen können dort messtechnisch validiert und das Gesamtkonzept auf die praktische Umsetzbarkeit sowie die Wirtschaftlichkeit untersucht werden.
Speziell mit einem Großkonzern der Elektro- und Automatisierungstechnik mit Erlanger Standort wird derzeit ein Prototyp eines skalierbaren Ultrakondensator-Spitzenlastspeichers konstruiert. Ziel ist es, diesen in der Karosseriefertigung der Automobilindustrie zu testen.
Für Abschlussarbeiten ergeben sich folgende Anknüpfungspunkte, die aus einer vorherigen Masterarbeit übergeben werden:
- Elektromontagearbeiten an DC-Netz und Speicherschrank in Laborhalle des Lehrstuhls
- Verbindung von Speicherschrank und übergeordnetem Steuerungssystem der Produktionszelle (SPS)
- Systemtest der Speicherlösung am Power-Hardware-in-the-Loop Simulator. Gegebenfalls werden im Rahmen der Arbeit Lastprofile bei einem OEM der Automobilindustrie aufgenommen.
- Erstellung Handlungs- und Dimensionierungsempfehlung für die kooperierenden Industriepartner
Das sogenannte DC-Team am Lehrstuhl besteht aus mehreren Wissenschaftlern und Studierenden, die ihre Arbeiten im Team erledigen und sich gegenseitig untersützen, weshalb eine Bereitschaft für regen Austausch untereinander gewünscht wird. Auch in dieser Arbeit ist die Vergabe der Arbeitspakete konkurenzlos in mehrere Teilaufgaben untergliederbar.
Über eine Kurzüberblick mit Notenspiegel der Studienleistungen aus Bachelor- und ggf. Masterstudium sowie über einem kurzen Lebenslauf freuen wir uns.
Kooperation mit Startup: Marktanalyse und Strategiekonzeption für den globalen Einsatz einer Energiemanagementfunktion für Solarstromanlagen

Der Markt für Photovoltaikanlagen (PV) befindet sich weltweit in einem dynamischen Wachstum. Kurzzeitprognoselösungen für PV-Leistungen sind ein Schlüsselinstrument, um Eigenverbrauch zu optimieren, Netzdienlichkeit zu gewährleisten und somit die Effizienz und Wirtschaftlichkeit von PV-Anlagen zu steigern. Diese Abschlussarbeit wird in Zusammenarbeit mit einem innovativen Startup durchgeführt, das sich auf Energiemanagementbausteine für PV-Anlagenbetrieb spezialisiert hat und eine globale Marktexpansion anstrebt. Ziel ist es, eine fundierte Marktanalyse durchzuführen, die potenziell interessante Länder identifiziert und konkrete Handlungsempfehlungen für den Markteintritt liefert.
Aufgabenstellung:
- Marktanalyse
- Identifikation der Länder mit dem höchsten Potenzial für das Produkt
- Untersuchung der Anzahl installierter PV-Anlagen in verschiedenen Regionen der Welt inkl. deren Wachstumsraten
- Analyse der Vergütungsmodelle für PV-Anlagen und der Strommarktsituation sowie der Kaufkraft der Regionen
- Bewertung des Mehrwerts, den das Produkt in den jeweiligen Märkten erzeugen könnte
- Wettbewerbsanalyse
- Identifikation und Analyse von Wettbewerbern in den einzelnen Zielregionen
- Bewertung der Marktposition und Alleinstellungsmerkmale (USPs) bestehender Lösungen
- Rahmenbedingungen für den weltweiten Handel
- Untersuchung regulatorischer, technischer und wirtschaftlicher Voraussetzungen für den internationalen Vertrieb
- Strategieentwicklung
- Entwicklung eines Aktionsplans zur Markterschließung priorisierter Länder basierend auf den ökonomischen und strategischen Erkenntnissen
- Konkrete Handlungsempfehlungen zur Marktbearbeitung (z. B. Partnerschaften, Marketingstrategien)
Ziel der Arbeit: Die Arbeit soll eine fundierte Entscheidungsgrundlage für die Internationalisierung und Weiterentwicklung des Produkts bieten. Neben einer umfassenden Markt- und Wettbewerbsanalyse soll ein priorisierter Aktionsplan zur Erschließung der relevantesten Länder entwickelt werden.
Über eine Kurzüberblick mit Notenspiegel der Studienleistungen aus Bachelor- und ggf. Masterstudium sowie über einem kurzen Lebenslauf freuen wir uns.