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Einleitung

Um sich auf dem Markt erfolgreich prasentieren zu kénnen, wird es immer wichtiger
schnell auf geédnderte Rahmenbedingungen zu reagieren und sich wechselnden Forde-
rungen des Kunden und den kiirzeren Lebenszyklen von Produkten anzupassen /37/.
Die neueren Produktionstechnologien reflektieren weltweit Trends in die beiden Rich-
tungen kleine bzw. mittlere LosgréBen und Produktfamilien groBerer Vielfalt. Diese Ten-
denz steht haufig im Widerspruch mit den Forderungen nach besserer Produktivitat im
Sinne einer Reduzierung der Produktionszeit und gleichzeitiger Steigerung der Maschi-
nenauslastung. Flexible Produktionssysteme (FPS) besitzen die Féhigkeit, eine breite
Palette unterschiedlicher Produktfamilien bzw. unterschiedlicher Produkitypen effizient
und mit minimalen Anderungen der Produktionsumgebung zu erreichen. Diese Eigen-
schaften erlauben es, die Produktionsflexibilitat bei gleichzeitig hoher Produktivitat zu
steigern /35/.

Derartige Flexibilitits-Konzepte erfordern komplexe Entwurfsmethoden sowie Steue-
rungs- und Uberwachungssysteme, nachdem der Grad der Flexibilitat dieser Produkti-
onssysteme nicht nur von der Flexibilitit der Einzelkomponenten abhéangt, sondern in
viel stirkerem Umfang vom zugrundeliegenden Steuerungs- und Kontrollsystem
(DECS).

Das Design und die Implementierung eines DECS ist eine komplexe Aufgabe, die vom
Design und der Implementierung des eigentlichen FPS nicht getrennt werden darf. Zwi-
schen einem Produktionssystem und dem zugehdérigen Steuerungs- und Kontrollsy-
stem existieren wichtige Wechselwirkungen und komplizierte Verbindungen bezuglich
deren Struktur und Verhalten. Das Design des flexiblen Produktionssystems kann nicht
optimiert werden, ohne gleichzeitig dessen EinfluB auf das Steuerungs- und Kontrollsy-
stem zu betrachten. Andererseits muB die Steuerungsstruktur, die mit den konventio-
nellen Design-Methoden optimiert werden kann, nach einer Modifikation der FPS—
Struktur rasch angepaBt werden. Dies ist jedoch nur dann moglich, wenn das DECS
die Informationen Uber den aktuellen Zustand des FPS und dessen Hardware- und
Software-Komponenten in seinen Funktionalitaten integriert /88/. Aus diesem Grund
muB DECS- und FPS-Design und Implementierung zusammen betrachtet werden und
simultan ablaufen, wobei die Interaktionen zwischen den beiden Komponenten berick-
sichtigt werden mussen.

Aktuelle Berichte zeigen, daB es Forschungsdefizite bezlglich Methoden und Verfahren
gibt, die auf die Kostensenkung und einen detaillierten Design—/Implementierungs—
ProzeB fir ein reales flexibles Produktionssystem abzielen /35/, /36/, /48/, /95/, /97],
/110/, /117/. AuBerdem werden Werkzeuge und Methoden flr Design, Test und Imple-
mentierung eines FPS verwendet, die sich von denen der Steuerung unterscheiden.
Die Implementierung des Steuerungssystems wird z.B. manuell durchgefiihrt, und nicht
von der Modellbeschreibung des Produktionssystems abgeleitet. Zudem kann die Kor-
rektheit bzw. Fehlerfreiheit des Design erst dann bestéatigt werden wenn die Implemen-
tierung des FPS abgeschlossen ist.
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Abb. I: Tendenz bei Entwurf und Implementierung flexibler
Produktionssysteme und deren Steuerung

Aufgrund der manuellen Erstellung der Steuerungssoftware getrennt von Design und
Implementierung des zu steuernden Produktionssystems, nimmt der gesamte ProzeB




Einleitung XIII

viel Zeit in Anspruch, fuhrt leicht zu MiBverstandnissen und Fehlern und ist folglich
meist sehr kostenintensiv (Abb. I(a) nach /48/, /52/).

Vor diesem Hintergrund wird in der vorliegenden Arbeit eine formale Vorgehensweise
erarbeitet, die in einem integralen Ansatz den gesamten EntwicklungsprozeB eines FPS
und dessen DECS von der Anforderungsanalyse Uber die Modellierung und Validie-
rung bis zur Implementierung unterstitzt. Eine derartige Methodik erschliet Potentiale
zur Vermeidung von hohen Kosten und lang andauernden Design-Prozessen und zur
zuverlassigen Implementierung von beiden Systemen /33/. Eine Synthesemethode soll
dazu vorgeschlagen werden, die es auf der Basis von systematischen Vorgehenswei-
sen wahrend des ganzen Designprozesses ermdglicht, formale Modelle der beiden
Systemen aufzubauen. Gleichzeitig sollen dabei Spezifikationen des Produktionssy-
stems und dessen Steuerung erhalten bleiben.

Zahlreiche mathematische Werkzeuge zur Modellierung und Steuerung flexibler Pro-
duktionssystemen sind aus der System- und Regelungstechnik-Theorie entstanden. Es
ist moglich, mehrere dieser Modellen fir dasselbe System anzuwenden, wobei jedes
einen anderen Gesichtspunkt des Systemverhaltens darstellt /27/, /57/, /64/, /102/. Me-
thoden zum Erstellen von Modellen eines FPS sind insbesondere dann interessant,
wenn diese direkt in Modelle der Steuerungslogik transformiert und danach implemen-
tiert werden kénnen, und zudem garantieren, daB der Anspruch auf Anwendbarkeit und
Flexibilitat des ganzen Systems befriedigt wird /5/, /92/. Damit ist folgende Aufgaben-
stellung definiert: Integration von "Anforderungsanalyse, Modellierung und Validierung”
innerhalb einer einzigen "Design Phase” (siehe Abb. I(b)).

Kernpunkt dieser Arbeit ist die Entwicklung und Realisierung einer Engineering—Me-
thodik, die in einem einzigen, durchgangigen Ansatz alle oben genannten Probleme in
den ersten zwei Phasen des System—Entwicklungsprozesses |6st. Sie basiert auf der
High-Level-Petrinetz-Theorie (H-L-PN) und dem Informationsaustausch tber das Auftre-
ten von Ereignissen innerhalb der modellierten Produktionsumgebung. Das Endergeb-
nis ist ein integriertes Entwurfswerkzeug, welches flr Design und Implementierung von
flexiblen Produktionssystemen und deren Steuerungsstrukturen geeignet ist.

Beim Betrachten der groBen Anzahl an Interaktionen zwischen den unterschiedlichen
Komponenten eines FPS und der Vielfalt der Steuerungs- und Uberwachungsfunktio-
nen, die auszufthren sind, wird festgestellt, daB DECS meistens hierarchisch und ver-
teilt aufgebaut werden mussen. Dies flihrt, ausgehend von der vorgegebenen Hard-
ware- und Software-Konfiguration eines flexiblen Produktionssystems und den
Informationen Gber die Aufgaben und Funktionen, die im System realisiert werden mus-
sen, zu folgender Vorgehensweise:

e Erzeugen von H-L-PN-basierten Modelle firr jede Ressource (d.h. Komponenten des
flexiblen Produktionssytems) und einem Koordinationsmodell der Ressourcen beim
Betrachten sowohl des Konkurrenz- als auch des Kooperations-Verhaltens.

e Erzeugen einer Abbildung der Sensor—/Aktor-Schnittstellen des flexiblen Produkti-
onssystems innerhalb einer aus dem Koordinationsmodell abgeleiteten logischen
Steuerungsstruktur.
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validierung der Spezifikationen jeder modellierten Ressourcen, der Spezifikationen
des flexiblen Produktionssystem-Layouts und der Spezifikationen der logischen
Steuerungsstruktur unter Verwendung formaler Analyse-Methoden (Funktionale Ana-
lyse und Lineare Algebra) in Verbindung mit den mathematischen Grundlagen der
H—L—PN-Theorie, und/oder rmittels simulativer Verfahren.

Die Implementierung des entwickelten und validierten flexiblen Produktionssystems
und dessen Steuerungsstruktur kann auf einer der folgenden méglichen Plattform reali-

siert werden:

On-Line Steuerungs- und Uberwachungsfunktionen generiert aus einem H-L-PN |n-
terpreter (PC).

On-Line Steuerungs- und Uberwachungsfunktionen generiert aus einem H-L-PN-Lo-
gik-Kontroller (SPS).

On-Line Steuerungs- und Uberwachungsfunktionen generiert aus einer, in eine 3D-
Kinematik-Simulation integrierten, H-L-PN-basierten Steuerungsstruktur.

Off-Line Steuerungs- und Uberwachungsfunktionen generiert aus einer, in eine 3D-
Kinematik-Simulation integrierten, H-L-PN-basierten Steuerungsstruktur.

Die Ergebnis ist eine H-L-PN-basierte, formale Abbildung des FPS und des in ihm inte-
grierten DECS, die vom Produktionsingenieur als eine Einheit betrachtet werden kann.
Diese wird hier "Virtuelle Produktionsumgebung” genannt, die synchron mit der ge-
steuerten und (berwachten realen Produktionsumgebung ablaufen kann.

Y |




Zusammenfassung und Ausblick

Die Faktoren "Zeit", "Flexibilitdat" und "Qualitat" gewinnen fir das Bestehen und den
Erfolg von Unternehmen im harten internationalen Konkurrenzdruck zunehmend an Be-
deutung. Nur mit kirzesten Entwicklungszeiten von der Produktidee bis zur Marktreife
werden entscheidende Wettbewerbsvorteile gegentber Mitbewerbern gewonnen. Die
Produktion muB deshalb sowohl kundenorientiert ausgerichtet als auch in der Lage
sein, auf neue Marktanforderungen flexibel und bedarfsgerecht zu reagieren. Dies kann
nur durch den Einsatz flexibler Produktionssysteme (FPS) gewahrleistet werden.

Der Grad der Flexibilitat dieser Produktionssysteme hangt nicht nur von der Flexibilitat
der Einzelkomponenten ab, sondern in viel starkerem Umfang von dem zugrundelie-
genden Steuerungs- und Kontrollsystem (DECS). Aus diesem Grund erfordern derar-
tige Flexibilitdts-Konzepte komplexe Entwurfmethoden und Steuerungs- und Uberwa-
chungssysteme.

Bisher werden zum Betrieb von flexiblen Produktionssystemen — neben CNC-, NC-,
RC-Einrichtungen und Zellenrechner (PC) — speicherprogrammierbare Steuerungen
(SPSen) verwendet. Der Einsatz unterschiedlicher Entwurfs- und Programmiermetho-
den ist bei PC-/SPS-Lésungen haufig zu beobachten und stets mit Zeitverlust verbun-
den. Bei einer Veranderung des FPS-Layouts oder bei einem Produktwechsel ist oft
eine Um- bzw. Neuprogrammierung der Steuerungssoftware erforderlich. Deren Ent-
wurf und Implementierung erfolgt, was den Einsatz von Werkzeugen und Methoden
betrifft, weitgehend getrennt von der Planung und dem Entwurf der flexiblen Produkti-
onssysteme selbst.

Ein neuer Ansatz, der die Integration dieser beiden getrennten Vorgehensweisen unter-
statzt, ist die Verwendung von High-Level Petrinetzen (H-L-PN) zu Entwurf, Modellie-
rung, Validierung und Implementierung flexibler Produktionssysteme. H-L-PN eignen
sich im Gegensatz zu anderen Verfahren weitaus besser zur Beschreibung von FPS
und der auftretenden diskreten, asynchronen und nebenlaufigen Prozessablaufen. Wei-
tere Vorteile von H-L-PN ist die fundierte mathematische Theorie als Grundlage und die
Moglichkeit, das ProzeBgeschehen graphisch abzubilden. Sowohl in der Planungs-
phase als auch in der Entwicklungs- und Implementierungsphase von FPS koénnen
H-L-PN-basierte Modelle eingesetzt werden.

Das H-L-PN-basierte Modell eines FPS bietet sich aber auch zur Steuerung des Pro-
duktionssystems an. Der Vorteil dieser Vorgehensweise liegt auf der Hand: Ist das H-L-
PN-Modell eines FPS erst einmal erstellt und durch qualitative (z.B. Strukturalanalyse)
sowie quantitative (z.B. Simulation zur Leistungsbewertung) Verfahren tberprift, dann
kann durch Ableitung von Steuerungssignalen aus dem H-L-PN qualitativ hochwertige
und fehlerfreie Steuerungslogik automatisch generiert werden. Der zeitintensive Ent-
wicklungsschritt in wesentlichen bedingt durch die manuelle Programmierung der
Steuerungsapplikation fur das FPS kann drastisch reduziert werden.

Die vorliegende Arbeit beschreibt ein auf H-L-PN basierendes Verfahren zur Entwick-
lung von FPS, das ein neues Steuerungs- und Uberwachungskonzept beinhaltet. Im
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Gegensatz zu den aktuellen Lésungen kann ein FPS nach Entwurf, Modellierung und
Validierung direkt durch Signalaustausch zwischen dem H-L-PN-basierten Modell und
dem Produktionssystem, und durch Informationsaustausch zwischen dem H-L-PN-ba-
sierten Modell und der Uberlagerten Steuerungsebene (Echtzeit~Entscheidungs- bzw.,
Planungsebene) gesteuert werden. Die Verwendung von durchgéngigen, plattformu-
nabhangigen, konfigurierbaren und fir den realen Betrieb einsetzbaren Modellen flexib-
ler Produktionssysteme und deren Steuerungsstrukturen erschlieBt ein erhebliches Ein-
sparpotential an Zeit und Kosten.

In dieser Arbeit werden zwei neue Engineering-Methoden vorgestellt. Die erste Me-
thode untersttzt den Anwender bei Entwurf und Implementierung eines auf H-L-PN-ba-
sierten Steuerungs- und Uberwachungssystems von FPS, wobei als Hardware-Platt-
form ein (Industrie-)PC zum Einsatz kommt. Die zweite Methode erlaubt die
automatisierte Erzeugung von IEC 1131-konformem SPS-Code aus einem validierten
und optimierten H-L-PN-basierten Modell eines FPS. Dabei kann der resultierende
Steuerungscode direkt in die SPS bzw. einen Off-line-Simulator geladen werden.

Durch das im Rahmen dieser Arbeit entwickelte Engineering-Werkzeug kann, durch
den Einsatz der H-L-PN-Theorie, der gesamte EntwicklungsprozeB, d.h. Projektierung,
Programmierung und Implementierung von Steuerungssoftware fiir FPS, unterstitzt

werden.

Die in beiden Methoden verwendeten H-L-PN-basierten Modelle eignen sich aber nicht
nur zur Entwicklung eines FPS und dessen Steuerung, sie konnen auch, durch ihren
graphischen und mathematischen Charakter, das momentane systeminterne Gesche-
hen visualisieren und dadurch zur Uberwachung bzw. zur Fithrung von Produktionspro-
zessen genutzt werden. Eine Erweiterung des Steuerungskonzeptes um eine Bedie-
nungs- und Beobachtungskomponente fir FPS wurde ebenfalls entwickelt. Diese
ermdglicht, neben der Visualisierung des Ablaufs von H-L-PN-Steuerungsmodellen
(Markenspiel), auch die Bereitstellung von benutzerfreundlichen graphischen Darstel-
lungen des gesteuerten ProzeBablaufes, d.h. die Integration des Menschen in das Ent-
wicklungskonzept wird beriicksichtigt (Mensch-Maschine-System).

Aufgrund der Erweiterbarkeit und des modularen Aufbaus kénnen die in dieser Arbeit
entwickelten und implementierten Steuerungsstrukturen als solide Basis fiir eine Reihe
weiterer Entwicklungen betrachtet werden. Insbesondere stellt das implementierte En-

gineering-Werkzeug eine neuartige FPS-Komponente dar. Mit Hilfe dieses Werkzeugs =

wird eine virtuelle Abbildung der flexiblen Produktionsumgebung erstellt, welche mit
dem realen FPS synchronisiert wird und damit fir den Produktionsingenieur als eine
Einheit anzusehen ist. Damit weist das vorgeschlagene Engineering-Werkzeug im Ver-
gleich zu traditionellen Vorgehensweisen eine ganze Reihe von zusétzlichen Vorteilen
auf: Spezifikationen kénnen formal verifiziert werden, die Implementierung des Systems
und der zugehorigen Steuerung kann automatisiert erfolgen, Test-Félle kdnnen gene-
riet werden, wodurch teuere Arbeitszeit beim Design des FPS eingespart werden
kann. Am wichtigsten ist jedoch die Méglichkeit zur Synthese zuverlassiger Produkti-
onssysteme (FPS/DECS) anzusehen.
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1 Introduction

Thesis Motivation

In order to be successful in the market, it is more and more important to react quickly
and opportune to alternating demands of the customers and the decreasing lifetimes
of products /37/. The recent production technologies reflect a world-wide trend towards
both, batches of small and medium size, and part families of increasing variety. This
tendency often comes in conflict with the demand on high productivity, i.e., on produc-
tion-times minimization and on simultaneous improvement of machine utilization. Po-
tentially, flexible production systems (FPS) possess the ability to attain efficiency and
versatility by producing a wide range of different product families and/or different types
of a product with a minimal effort in changing the involved manufacturing environment.
These characteristics make FPS also able to increase production flexibility while main-
taining high productivity /35/.

However, the flexible production system's potential is not yet fully used, because of its
high complexity and cost of its control systems, i.e., discrete-event control systems
(DECS). There exists a lack of a methodology for quickly and economically design-im-
plementation of DECS. This lack is considered as one of the contributing factors to the
lack of widespread applications of the flexible production systems.

Design and implementation of DECS are complex tasks, which can not be separated
from the design and implementation of the FPS itself. There are significant interactions
and intricate relations between the production system, i.e., structure and behavior, on
the one hand, and the control, on the other hand. System design can not be optimized
without considering its influence upon control. In turn, control performance, which can
be optimized by using conventional control design methods, can further be improved
by modifying the system structure. Matching these characteristics requires the DECS
to incorporate knowledge on the FPS current state and integrating hardware as well as
software components /88/. Therefore, design and implementation of FPS and DECS
must be integrated and performed simultaneously by considering the interactions and
tradeoffs between the two.

Currently reported results show that there is not sufficient research related to a low-cost
and detailed design-implementation process of practical flexible production systems,
e.g., use of different tools and methods for the design, implementation, test and setting
into operation /35/, /36/, /48/, 195/, /97/, /110/, /117/. For instance, the implementation
of the control system is carried out manually and not derived from a model-like descrip-
tion of the production system. Then, the correctness of the design can only be vali-
dated after the implementation phase. Due to the manual control software production
process separated from the design-implementation cycle of the production system to
be controlled, the whole process is very time-consuming, presenting high rates of mis-
understanding and mistakes and, as consequence, it is very expensive (see Fig. 1a,
/48], [52]).
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Fig. 1: Trends in the Fields of Development and Implementation of DECS

Motivated by these facts, the purpose of this work is to provide a formal methodology
that covers the development life-cycle from requirements-analysis through to design- =
validation and implementation of flexible production systems and their discrete-event
control systems in an integrated manner. Such methodology represents a way of cut- 5
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ting down the costs and the duration of the design process and to improve a reliable
implementation of both systems /33/. A synthesis method has to be proposed. It is
supposed to build formal models of both systems systematically and progressively
preserving the desired system’s and control's specifications all along the design pro-
cess.

Numerous mathematical tools for modeling and controlling flexible production systems
have been emerging from the systems and control theory, and also from operation
research communities. It is completely possible to employ several of these models for
the same system, each representing a different point of view of the system’s behavior
/27/, /57/, /64/, /102/. From the operational point of view, method of constructing the
control model of a flexible production system is desirable, especially if the designed
model can be directly transformed into operational control logic, and it guarantees that
the requirements of applicability and flexibility of the system are satisfied. Reported
approaches provide, either design framework but no design methodology, or limited
design policies that require trial, analysis and redesign repetitively to complete the mo-
deling of the system and its control structure /5/, /92/.

Thesis Contribution

The greatest attention of this work is concentrated on a methodology able to help
solving all above summarized problems with an unique approach. This is based on
information feedback of the occurrence of events in the production environment and
High-Level Petri net (H-L-PN) theory. One important assumption is now identified: In-
tegration of “requirement-analysis, modeling and validation” in an unique "design
phase” (see Fig. 1b), for none of these can be adequately developed independent. The
final product is an integrated package suitable for design (requirements-analysis, mo-
deling and validation) and implementation of flexible production systems and their con-
trol structures.

Taking into consideration the tremendous amount of interactions between the different
components of a FPS and the variety of control and monitoring functions to be per-
formed by its DECS, the last are mainly built in a hierarchical and distributed manner.
This leads to the following proposal, where from given specifications, models are built,
validated, integrated in different hardware/software platforms and finally set into opera-
tion. The steps of this methodology are in detail:

Given:

e a fixed, pre-defined set of resources (i.e., components of the flexible production
system), where a resource is described by a set of specifications, port-structures
for connecting it with other resources, constraints at each port-structure which de-
scribes the resources that can be connected at that port-structure, and other struc-
tural constraints, and

e a description of the desired structure (e.g., the layout of the flexible production
system) and information about the set of tasks and functions which have to be
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performed in each resource and in the whole system related to Production objec.
tives.

Build:
e an H-L-PN-based model for each resource of the system;

e a coordination model of resources which is obtained by taking into account both
competence and cooperation relationships, and by composing the above modele

dels
of resources in a bottom-up manner;

e a mapping of the sensor/actuator interface of the flexible production cell into a dis-
crete-event logic control structure derived from the model of each resource and
also from the coordination model;

® a kinematics model with logical informations about each resource and about the
whole flexible production system.

Validate:
e the specifications of each modeled resource;
® the specifications of the flexible production system;

® the specifications of the logic control structures (from components and the com-
plete flexible production system).

This phase will be performed by means of simulation, and/or by using formal methods
based on Functional Analysis and Linear Algebra which exploit the mathematical back- |
ground of the H-L-PN.

Integrate:

® the H-L-PN-based coordination and logic control into a discrete-event control struc- |
ture;

® the H-L-PN-based controller into a 3-D kinematic simulation tool.

Setting into Operation:

Four possible ways for setting the developed DECS into operation are proposed and
implemented:

® on-line control and monitoring functions generated from an H-L-PN interpreter im-
plemented in a PC-platform:; 1

e on-line control and monitoring functions generated from an H-L-PN logic controller _
in a PLC-based platform; ’

e on-line control and monitoring functions generated from an H-L-PN-based controller |
embedded into a 3D-kinematic platform; |

e off-line control and monitoring functions generated from an H-L-PN-based controller 1
embedded into a 3D-kinematic platform.

As product of this phase, the H-L-PN-based formal specification of the FPS and its .
DECS embedded in it are treated by the production engineer as a unique entity. This
is called here: "virtual production environment” that evolves in a synchronized manner
with the controlled and monitored real production environment.
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The pressure of increasing competition together with the development of new technolo-
gies has forced widespread changes in production methodologies and control struc-
tures of the production systems /110/.

This chapter examines important fundamentals of modern production systems and re-
lated hierarchical control systems. It provides also an overview of model-based and
knowledge-based methodologies as result of the use of High-Level-Petri Nets for the
design and implementation of these systems.

2.1 Overview of Production Structures and Concepts

Different production structures have been developed, in order to solve the arising prob-
lems in the process of efficient product manufacturing. The manufacturing environment
has evolved from intensive manual operation, where labor operated individual ma-
chines, over semiautomatic operation where the machines were able to perform a few
steps in automatic sequence, to a high degree of automation making extensive use of
computers, and flexible and automated equipment /89/.

The oldest production-line organization, optimized for mass production, is driven by a
conveyor and the workers have to operate synchronously each doing a repetitive task.
Such systems can only produce a unique kind of product. The optimization of synchro-
nous systems consists of decomposing all the work done into a set of operations that
have exactly the same duration /102/.

In the flow shop jobs undergo the same sequence of operations. Volumes are large
and production is very efficient. Such systems can only produce a unique family of
products that slightly differ from each other. Highly automated versions of the flow shop
result in transfer lines (or assembly lines). The drawback of this production scheme lies
in the fact that the conversion to another product is a time-consuming task.

In the job shop there is no notion of production line, rather for each product a produc-
tion route is defined. This route describes a sequence of machine operations which is
not restricted by the physical layout of the machines. Such systems can handle any
number of product families and are limited only by the set of operations that the ma-
chines can perform. Its operation is asynchronous. It is more versatile and flexible kind
of system than the flow shop, unfortunately it is also known to be the less efficient
because either a large number of machines remain idle most of the time, or the in-pro-
cess inventory is very large (completion of the products are unpredictable because
they may remain a very long time in intermediary inventories) /102/.

Flexible production systems (FPS) are an attempt to achieve the advantages of both
the job shop and the flow shop. It reconciles the efficiency of well-balanced, machine-
paced transfer lines, while utilizing the flexibility that job shops have, to simultaneously
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machine multiple types, in order to satisfy a versatile demand at low cost /6/ /2?4
/108/. x

2.2 Flexible Production Systems

Compared to traditional production methods, flexible production systems have the abijj
ity to produce a family of parts simultaneously with reduced finished and in-proc
parts inventories, but it also responses faster to changes in demand requirements /
(see Fig. 2).

However, from an economic point of view, the use of a flexible production system
reasonable only within a restricted range of parameters such as productivity, numbey'
of different parts to be processed, and flexibility, among others.

Number of different parts to be processed

b small
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Remark: A) Production of each machine; B) Flexible concept; C) Non flexible concept

Fig. 2: Application Fields of distinguished Manufacturing Concepts

Three kinds of flexibility are principally necessary for the operation of a FPS:
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Long term flexibility (product flexibility)

The feasibility of introducing new product families in the production system during its
operation with minimal modifications in the production environment, including the abil-
ity to reconfigure the system to handle the production of different products.

Short term flexibility (setup flexibility)
The possibility of handling concurrently a large variety of product families at a given
time in the system with no modification in the production equipment.

Routing flexibility
The ability to route parts through the system in a dynamic fashion taking into account
machine breakdowns, required tooling, etc.

In order to meet the above described requirements, a flexible production system,
whether simple or complex, consists of:

A set of flexible resources (i.e., human operators, numerical controlled machines, ro-
bots)

These are capable of performing various operations on a random sequence of parts
with negligible change over time from one part to the next. Flexible machines, for exam-
ple, have an automatic tool storage-retrieval system, and machining programs can be
down-loaded /102/. The flexibility of each resource allows the choice of one or more
of them for performing each operation and also continuing the production even when
one of them is out of service because of failure or maintenance.

An automatic transport system

The task of a FPS is to carry out a production plan consisting of a list of products to
be processed with regard to a predefined working routing. A big requirement is that
a sophisticated transportation structure allows a flexible flow of parts (i.e., raw material,
tools, products) with alternate routes. This is because, in absence of a physical produc-
tion line, the layout of the system does not correspond to the sequence of resource
utilizations. Any location on the shop floor has to be reachable from any other one.

A sophisticated decision making system (controller)

A flexible production system can be straightforwardly defined as a set of resources
which cooperates or competes for performing a set of activities in order to obtain a set
of products. A very important activity is then the information processing necessary for
production: at each instant has to be decided "What has to be done?”, "When and on
which resource?”. The production system’s degree of flexibility will not only be condi-
tioned by the flexibility of its elements (workstations, storage, handling and transport
systems, etc.) but will also depend fundamentally on the integrated control system
/71/. The flexible production system would be of little use without a suitable control sys-
tem. The last one has to allow the introduction of new family products with their routes,
tolerate machine disruptions, optimize machine utilization, manage the material- and
information-flow, etc.. It is this system which has to organize the production and to
schedule and synchronize the resource utilization /102/.

As the target of high flexibility has to be maintained, it is required the decomposition
of flexible production systems into "basic units” physically and logically identified /90/.
A large number of typical production system components can be selected, analyzed
from an operational point of view and then structured into flexible production cells
(FPCs).
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Flexible Production Cell

A flexible production cell can be defined as an elementary flexible production system
consisting of a flexible machine tool (or an assembly device, or any complex device
dedicated to a complex production operation), human operators, some local storage
facilities for tools and parts and some handling devices such as robots. In order to
transfer parts and tools between the cell and the global production system, an auto-
mated transport system has to be incorporated as a binding component (see Fig. 3).

Flexible Manufacturing Cell

Automatic Guide Vehicle

Human Operator
Fig. 3: Composition of a Flexible Production System

The high capital cost of a FPS/FPC means that the design and efficient operation of
the system is very important. In order to meet this objectives many problems have to
be solved /27/, /64/, /102/:

® an economic justification;

e selection of parts to be manufactured in the system;

e selection of machine tools;

e selection of a storage system (local buffers or central storage);
design of material handling system;

selection of fixtures and pallets;

management and control of the system (how can jobs be sequenced to minimize
completion time, to respond to material-flow and control sequences specifications?);

e design of computer systems and communication networks;
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e layout and integration of the machines, storage system, parts handling system, com-
puter and control systems.

This work is intended to present certain issues in development, application and imple-
mentation of techniques for solving problems related with the last three above high-
lighted points.

2.3 Discrete-Event Control Systems

The increased flexibility of production systems has encouraged researchers to define
these complex systems as dynamic ones /27/. From this perspective, a flexible produc-
tion system can be seen as a system with several independent interacting concurrent
processes, exhibiting characteristics such as concurrency, conflict situations, mutual
exclusion states and non-determinism. The interaction between the processes occurs
in accordance with the abrupt occurrence of events and asynchronously (event-driven
instead clock-driven). Typically, each independent process is split into several opera-
tions. The execution of each operation is conditioned on the satisfaction of a finite set
of non-deterministic events, i.e., logical preconditions that may occur spontaneously.
Upon the execution of any such operation, a new set of logical conditions is created.
This set inhibits the execution of some operations and enables the execution of others
in the system.

Because of these characteristics FPS and FPC can be classified as discrete-event dy-
namic systems (DEDS). The behavior of these systems is very difficult to describe us-
ing traditional control theory, which deals with systems of continuous or asynchronous
discrete variables modeled by differential or difference equations. As many authors
pointed out /5/, /27/, /35/, /36/, /46/, /66/, /102/, /104/, /117/, modeling, formal specifica-
tion and validation problems emerge as a main issue for a more effective design and
implementation of the real-time control of these kinds of systems, i.e., discrete-event
control systems (DECSs).

In the sequel, flexible production systems and their control structures will be consid-
ered from a strictly discrete perspective.

2.3.1 Hierarchical Structure

Due to its complexity, to the tremendous amount of interactions among the different
components and the variety of performed functions, DECS are currently built in a hier-
archical and distributed manner. Several variations of such structure have been pro-
posed in the literature /91/, /93/, /92/, /102/, /115/.

Based on some of those approaches, this work focuses on development and imple-
mentation of some of the components of a DECS multi-level structure, with functions
closely related to the real-time "shop floor control”.

Fig. 4 shows a hierarchical architecture of DECSs developed and implemented at the
Institute for Manufacturing Automation and Production Systems in Erlangen, to perform
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control of FPC. It is coarsely made up of the following main control components: plan-
ning, real-time decision system (scheduling and dispatching), coordination, logic con-
trol, real-time monitoring and visualization, and diagnosis.

' Planning l

1 Year
Horizon

recommended strategies

1-2 Week
Horizon

'
Q
-7 | &
@
a {
E |
]
=
o

performance

Diagnos}s
Error Recovery

schedule
request

detailed
scheduling

Monitoring and
Visualization |

Real-Time
: .
: e : Human |
' real-time information Operator |
L}
T v Casdispatching (Bl Sacase et i = e - - -~ WS = =S
: orders
' states of resources
L}
]
; e s error messages
Real-Time 4 Coordination and i
L] i -
A SEHEEEE problems to be solved
'
L}
]
""" * signalsto Jl- - -- M signals from -----  process --l-=-<-----k----c-c=
actuators sensors parameters
3 I[fj
i s E}:’_q. 4 signals from hardware
'*.;-?j’p v = 11 components
| L»_u.ii ¢,. 5%} ﬂf‘r 1 (sensory feedback)
\\ 'F?g..{(g‘//. —
B fl,/’/ signals to hardware
et : components
Flexible Production Cell (actuators)

Fig. 4: Hierarchical Discrete-Event Control System for Flexible Production Cells

Each component operates within a control level and on a certain time horizon (time
scales from years and months to minutes and seconds on the shop floor) and performs
a different control function according to the view it has of the FPS/FPC under control

/27/.

Two authors, /91/ and /102/, reported a very good description of some of the DECS
components depicted in Fig. 4. In order to make this work self contained, each of them

will be shortly described below.

= .
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Logic Control

The very lowest level of the hierarchy is called Logic Control. It implements the real-
time control of the resources and interacts directly with the input- and output-modules
of the process interface (sensors and actuators of the components of the production
environment). Typical issues at this control level, among others, are the automatic con-
trol of the insertion of electronic components into printed circuit boards, set and reset
of actuators, reading sensor signals from the process interface, etc.

Coordination Control

In the next level, Coordination Control, the detailed specifications of the logic opera-
tions are taken as shown. Its main function is to update the state representation of the
production environment in real-time. If the operations themselves are treated as black
boxes, the main issues of this control level are the synchronization, i.e., coordination
of resources for performing these operations. There are two main goals, routing and
allocation of cell components, close related to the coordination control tasks, in order
to avoid deadlocks and to limit the effects of disruptions on cell operations.

Dispatcher

The main function of this component is to make real-time decisions for aiding the op-
eration of the coordination control component.

Both, the coordinator and dispatcher, interact in a closed manner and they manage
together the distribution of the elements on the resources of the cell in real-time.

Scheduling

The main function of this component is to produce a schedule, i.e., to decide at which
date a given operation has to be dispatched (a sequence of dates for the execution of
each operation on each machine). This component with the dispatcher together are
considered within a whole structure called real-time decision support system (RTDSS).

The combinatorial explosion of the number of alternatives for scheduling and dispatch-
ing is generally enormous in the case of a FPC, because each component can perform
many kinds of operations, and for a given machine, once the operation is fixed, it is
necessary to determine an order of execution. A planning component is necessary in
order to efficiently reduce the number of these alternatives.

Monitoring and Visualization

In order to make good decisions, the real-time decision support system needs informa-
tion related with the execution of the planned operation, the current state of the system
i.e., of each resource and process, etc. The coordination controller contains itself more
information about the processes that currently are developed in the system and about
the conditions of the machines. This can be used together with the information coming
out from the process interface for generating a complete knowledge base for monitor-
ing and visualization goals. Such a function is performed by the monitoring and visual-
ization component.
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Diagnosis and Error Recovery

Based on the information, provided by the monitoring component about abnol’mal
functioning of resources, e.g., the detection of wear and breakage of machine toglg
errors and other unreliable operation conditions can be detected, evaluated and useq
as source of new knowledge. A diagnosis component is responsible for such funCtion‘
and will be used to issue both, automatic and manual, error recovery strategies.

Planning

Frequently various levels of planning are considered in order to support the tasks of
the real-time decision system. In short-time planning level, information concerning the
availability of raw material is used in order to determine at which time each product wil|
be introduced in a FPC (earliest starting time) and at which time it has to be delivereg
(due date) - Material Requirement Planning (MRP). Routing and scheduling remain im.
portant here. However, setup times become crucial. Frequently, it is also at this leve]
that the resources (machines in particular) are allocated to the operations in order tg
balance their work load - Manufacturing Resource Planning. These and other planning
functions are included in the upper levels of the hierarchical structure of Fig. 4.

2.3.2 Computer-Based Implementation

The distributed and hierarchical structure depicted in Fig. 4 can be seen as two con-
nected logic systems: a real production environment, i.e., flexible production cell with
its process interface /42/ and a virtual production environment, i.e., the components of
the hierarchical and distributed DECS described above.

.i
The hierarchy shown in Fig. 5 contains a substantial amount of functions distributed on i
the two named sub-systems. The first one (real production environment) provides the %
production functions which are performed in a synchronized manner with the evolution
of the virtual production system represented and implemented in a PC-based platform, ;
1

The different PC-implemented components of the virtual production environment g
constitute the skeleton of the control system hierarchy. Moreover, they can be located

at two hierarchical levels, i.e., the DEC level and the Intelligence level. The first one is
composed of the coordination and logic control components described above. The
second level has embedded the knowledges that are necessary to support the evolu-
tion of the DEC level. These two levels exchange information and signals to allow the
whole sub-system running together with the real production world. The main character-
istics of each component of both levels will be described in the following 6 chapters.

2.3.3 Programmable Logic Controller-Based Implementation

The hardware platform of the virtual production environment depicted in Fig. 5 can be
modified and extended in order to allow the use of standard industrial control compo-
nents such as Programmable Logic Controllers (PLC). |
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PLC are comparable in design to most computer-based control systems, but are spe-
cialized in logic-based control, designed to operate in industrial environments under
many different conditions /5/, /26/, /43/, /112/.
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Fig. 5: PC-based Discrete-Event Control System Architecture

.......................

PLC have built-in input/output (I/0) modules linking them to the hardware components
constituting the real production environment. Fig. 6 shows an architecture to implement
a DECS based on the use of PLC.

It is principally composed of the same components of the PC-based architecture, how-
ever, a very important part of the virtual production environment is now replaced by a
PLC.
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The DEC level, i.e., the coordination and logic control, is coded on a PC and thep
loaded into a PLC, which acts as kernel of the whole control system. More detailg
about this approach will be presented in chapter 7 of this work.
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2.4 Tools for Design, Modeling and Validation of Hierarchical Control
Structures ‘

2.4.1 Design

Since flexible production cells consist of a number of elements interacting in a complex
manner, DECS design is one of the most difficult steps in the FPC design procedure
12].

Many important aspects related with the composition and functions of the FPC to be
controlled, have to be considered, in order to design each of the components of the
hierarchical discrete-event control structure presented in Fig. 4 /12/, /21/, /28/, [91/,
/95/, 102/, /110/, /[118/:

1) A product or family thereof to be processed in the FPC is specified.

2) The components of the production system are fixed. This means: one cannot
introduce new resources (new machines, new robots).

3) Each resource of the cell can be connected to certain other components in a fixed
and predefined way, i.e., the components cannot be modified to get arbitrary connec-
tivity. Here, the idea of a "port-structure” is used as an abstraction. It is an element that
allows a resource to be connected to other resources. From the point of view of the
system layout, each resource presents constraints on the other resources which can
be connected at each of its port-structures.

4) It is necessary to develop and apply a methodology for specifying the connectivity
of resources and "how to connect different resources together”, in order to represent

the behavior of the whole system.

5) Not only the layout of the production system has to be considered, but also various
strategies like the following ones, just to state some examples /104/:

e the loading of pallets is only permitted, if a certain number of pallets can enter the
cell at the same time (e.g., one pallet with the part to be processed and the other
pallets for raw material to be assembled);

® the definition of an upper bound for pallets to be loaded into one buffer can help
to avoid deadlocks (some unused space is needed to re-manoeuvre the pallets in
case of a temporal deadlock within a subsystem, e.g., a robot);

e before a sequence of single actions is started it must be proved, that all the neces-
sary resources are available in order to prevent deadlocks. In other words, these
resources must be reserved exclusively.

6) There are several criteria that are used to determine control policies and strategies,
like those addressed above for operating a FPC /27/. Among these are:

® Minimizing of the total time required to complete all the jobs (i.e., minimize the
makespan)

® Minimizing the setup costs
® Meet the due date
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® Minimizing of the mean time in the shop (mean flow time)
® Minimizing of machine idle time |
e Minimizing of mean number of jobs in the system
e Minimizing of percentage of jobs late

® Minimizing of mean lateness of jobs

® Minimizing of mean queue time.

7) The DECS has to show the capability of integrating sensing activities with decisi
making processes related to path planning, intelligent supervisory control, etc. /8/.,

As a consequence of these and other aspects four kinds of knowledge are main
necessary for performing the design of the DECS of a FPC:

® Available resources

® Functional architecture

® Mapping from functions to resources

® Characteristics of a distributed architecture.

Due to the complexity of the problem and to the large variety of situations to be con “
ered a formalization is necessary to maintain the generality and the frex required
for the DECS under development /90/. An appropriate methodology of representahqn
for each component of the hierarchical control structure has to be chosen. The major
point here is that the same system may require different models to study different is-
sues. Once again, this is related to the lack of a unified body of knowledge in thta
research field /27/. \

2.4.2 Modeling

The technique for the modeling and implementation of DECS presented here considemf
both functional and performance specifications, and propérties of the FPC to be con.
trolled, which are used as input to a design methodology for the modeling of the whole
DECS. §

Due to the steadily increasing complexity of the industrial production systems, and
from a brief revision of referenced works, it is clear that Petri nets are a suitable modek
ing, analysis and implementation tool for the design of FPCs and their DECS /11/, IZSI '
128/, /47/, 55/, /102/, /111/, /117/. Petri Nets have a well-founded mathematical theory
and a very good capacity to formally and graphically present certain typical relations
ships and to visualize certain concepts, such as: parallelism and concurrency, synchro--
nization, resource sharing, memorizing, monitoring /74/. When Petri net models are
used in industrial applications, they become highly complex and are difficult to handle.
In this case, the use of High-level Petri nets, e.g., colored Petri nets (CPN), has allowed
creating a compact representation of states, actions and events of the modeled sya-
tems /2/, /18/, /45/, /59/, /60/, [71/. '
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2.4.3 Validation

Validation analysis aims at verifying the correctness of DECS design and at verifying
all initial specifications. This analysis is achieved through a description, namely, a
model of the system. This model needs to include all significant information on both,
FPC and its DECS operations: processing-plans, resources, layout, commands, control
laws, etc., and their interrelationships. The model may result in a computational model
practical for analytic validation, or in a simulation model which allows experiments to
be performed onto the system model.

Basically, two kinds of analysis of system model can be made: the qualitative and the
quantitative analysis.

The first one verifies the compliance of certain desirable specifications of the system’s
components and system’s behavior such as the absence of deadlock, cyclicity, finite
number of states, finite capacity and boundedness of resources, possible control se-
quences, etc. The quantitative analysis is often called performance evaluation, and it
takes into account system specifications, therewith checking the system’s compliance
with specified performance indexes, such as: production period for a part, percentual
use of a resource related to a part, manufactured parts per time unit, etc. /22].

Integration of Modeling and Validation for Design and Implementation
of Flexible Production Systems and their DECS

Fig. 7 depicts the main steps to be performed in order to design, model and implemen-
tate DECS structure with the methodology proposed here.

Starting with a Requirements analysis, the design/modeling and validation of each re-
source and the whole structure of a flexible production cell in a discrete-event oriented
(based on High-level Petri nets) and in a motion-oriented (based on 3D-kinematic simu-
lation) platforms is performed /10/, /17/, /41/, /84/. The result of these first steps is a
coordination control structure with an identification of typical problems related with the
system's behavior: shared resources, material-flow conflicts, error detection, collision
detection, etc.. (this behavior is reported to the real-time decision support system and
to the monitoring system when the system is set into operation).

Next, the H-L-PN-based validated model of the coordination control system is modified
into synchronized Petri nets. These are derived from the first one by applying a top-
down refinement methodology to facilitate the supervision (logic control, monitoring
and diagnosis), the interaction with the other components of the hierarchical DECS as
well as the maintainability of the whole structure. The final result is validated H-L-PN-
based formal specification of the coordination control of resources of the system, and
a tested logic control structures for control sequencing functions.

Finally, if the test of the logic control structure with the 3D-kinematics simulation is
successful, the integration and implementation phases are carried out (more details
about this approach are given in chapter 6).
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2.5 High-Level Petri Nets

Petri nets are now defined so that they can be discussed in a formal manner.

2.5.1 Basic Definitions

Generalized Petri Nets

Definition 1: A generalized Petri net (PN) is a directed, weighted, bipartite graph con-
sisting of two types of nodes, places and transitions, where arcs are either from a place
to a transition or from a transition to a place. In graphical representation, places are
drawn as circles, transitions as boxes or bars. Arcs are labeled with their weights (posi-
tive integers). A marking (state) assigns to a place a non-negative integer (number of
tokens).

A Petri net is defined by a 4-tuple /74/, /101/:
PN={R T F W} (2.1)
Where:
® P={p;,po,...Pm} is a finite non-empty set of places,
® T={t;,b,...t,} is a finite non-empty set of transitions,
® FC{PxT} U {TxP} is a set of arcs (flow relation).
It is assumed that PNT=¢ and PUT#¢

e W :F— N| {0} is a weight function.
W can also be defined by means of the input matrix £ and the output matrix S.
E can be seen as function E: PxT — N | {0}. Each element of E represents the weight

of the input arc from place p; to transition §.
S can be seen as function S: TxP — N | {0}. Each element of S represents the weight

of the output arc from transition ¢ to place p.

Definition 2: A marking M of a PN is a function M: P —+ N, which gives the number of
tokens in each place p; € P, represented by black dots. The presence or absence of
tokens indicates the status of a place. The marking M can be seen as a vector, where
the entry m; corresponds to the marking of place p; € £ i.e., m; =m(p;).

Definition 3: A Marked PN is defined by a 5-tuple

MPN={R T, F W, Mo} (2.2)
Where P T, F W were defined in (Eq. 1.1) and M is the initial marking of the net, with
dim(Mp) = n
Definition 4: For a transition t, the input set of places is defined as ¢ = {p/E(p,t) = 0}.
The output set of places is defined as t- = {p/S(t,p) =0}.

Definition 5: A transition t is said to be enabled for a marking M if, and only if V p; €
t, m(p;) =E(p;,t), where m(p;) denotes the number of tokens assigned by the marking
M to place p;.
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A set of transitions 7CT is enabled by a marking M if, and only if V p e T,
m(p;) =E(p;,t). That is, for each place p; € P m(p;) is equal or greater than the weight
of the arcs between the place p; an the transitions of the set z for which p; is an input
place (p; € 7).

1
1
i

2.5.2 Dynamic Behavior

The 5-tuple of (Eq. 2.2) describes the static aspects of the net. To study its dynamics |
new definitions are necessary.

Definition 6 (Firing Rule): If a transition is effectively enabled, then it can be fired. After
an enabled transition { is fired E(p,t) tokens are removed from each of its input plaoes
4, and S(t,p) tokens are added to each of its output places t-.

Definition 7 (Evolution Rule): The firing of a transition t; issues a change of the state of

the net (change of the marking) which can be represented as follows:

Mo [t > M (23)
Where My, M; are the initial and final markings (states) of the net evolution.
Definition 8 (Sequence of firing): A firing sequence from a marking My is a (possubly
empty) sequence of transition sets 6 = 7;7,...74 so that |

Mo[tu>M; [12> M. [t > My (2.4)

It is possible to write M, [ @ > to denote that the sequence 6 may be fired at M,
and Mp [ 6 > M, to denote that the firing of @ yields M.

Note:There are two different assumptions commonly made regarding to the number of
transitions that can fire at a given instant: a) under concurrency assumption more than
one transition of a set of enabled transitions zC T can fire at any instant; and b) under -
no concurrency assumption only a single transition of a set of enabled transitions tCT

can fire at any instant. Under the no concurrency assumption, each 7, in (Eq. 2.4) is
a singleton set, and 6 is a sequence of transitions.

Definition 9: A marking M is reachable in a MPN with initial marking M, if there exists
a firing sequence 6 such that M, [ 8 > M.

Definition 10: Given a MPN with initial marking My, the set of all markings reachable
from Mp (also called the reachability set of the net) is denoted as R(Mp). f

Definition 11: The set of all possible firing sequences from My in a MPN is denoted by
L(Mp). :
Definition 12: The incidence matrix of a PN is defined as /| = ST—E, and it can be seen
as a function PxT — Z. ]

Taking into consideration the definitions 7—12 the evolution of a marked Petri net can
be written as a linear matrix-vector equation. Let marking M be reachable from marking
M, by firing a sequence 6 = 1;75...1¢. Then the following state transition equation is
satisfied:

M=M+1.0 (25)
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Where @ : T —+ N is a vector of non-negative integers with dimension cardinality(T),
called the firing count vector defined as
Ot) := Z; ey |{t}nr1| (2.6)

That is, O(t) represents the number of times transition t appears in 6. The set of mark-
ings such that there exists a vector @ satisfying the state transition equation (Eq. 2.5)
is called the potentially reachable set and is denoted P®R(Mp). In general PR(Mp) 2
R(Mo)-

Note: As described in /74/ and /55/ respectively, the state equation (Eq. 2.5) in matrix-
vector form resembles the standard state transition equation for discrete-timer linear
systems, with the marking vector as the state vector, and the firing count vector as input
vector. Letting My, ¢ denote the marking after the k-th transition firing and letting @
denote the k-th firing count vector, (Eq.2.5) becomes

Mer1 = M + 1. 6 (2.7)

which is strongly reminiscent of xe.1 = A . X + B . U, from linear systems theory.
Suggestion: the existing results from linear system theory can be readily applied to the
special case of Petri net dynamics. But in the Petri net dynamics is a complication,
which restricts its usefulness: only nonnegative markings are allowed during the evolu-
tion of a Petri net (see definition 2). Nevertheless, there is a big value in viewing the
Petri net dynamics from a linear algebraic perspective (see section 2.2.4). In order to
generate Petri net models and to analyze their dynamics, a structural analysis theory
has been developed which is mainly based on this perspective /14/, /17/, /18/, /23/,
/47/, /50/, [74/, [101/.

2.5.3 Extensions and other related Definitions and Assumptions

The basic Petri net models presented in section 2.5.1 have often been enhanced and
modified to serve various purposes /22/, /55/, /59/, [74/, /102/. It is important that the
extensions maintain most properties of conventional Petri nets, therefore remaining an
important tool for validating the model of any given system.

Four extensions of this models that will be used in this work are also described and
presented here as High-Level Petri Nets (H-L-PN), namely, commutative colored Petri
nets (i.e., Ordered Colored Petri nets), synchronized Petri nets for control purposes,
self-adjusting synchronized Petri nets and a kind of temporized Petri nets.

Commutative Colored Petri Nets

In many cases the complexity of a PN model may be important, even for systems
functionally not very complex. Under these conditions, colored Petri Nets (/45/, /59/,
/60/) may bring an important contribution. The association of color sets with tokens and
transitions and the definition of functions associated with the arcs of the net, allow a
very concise and readable representation of complex systems with a high degree of
abstraction /2/. There is a simplification of the net structure through the transfer of
information to the place markings (token-colors), to the transition firings (firing- / occur-
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rence-modes), and to the transformation (color-functions) made on the place marklngs |
through the functions associated with the arcs of the net.

Let us recall here, under the definition of colored Petri nets (CPN), the firing rule of]
transitions, the incidence matrix and the rules of the dynamical evolution of coloreq }

Petri nets /18/, /23/, /50/, /59/.

Definition 13: A CPN is a 7-tuple
CPN=<PBTC,II7G M > (2.8)
satisfying the following requirements:
e P ={p4 P2, P Pm } is a finite set of places.
o T={¢4,b,.., t..., t; } is a finite set of transitions.

® C is the color function defined from PUT into 2, where 2 is a set of finite and not
empty sets. An item of C(p) is called a color of "p" and C(p) is called the color set
of "p". C attaches to each place a set of possible token-colors C(p) and to each
transition a set of possible occurrence-colors Cft).

® /* (/) are respectively the input matrix and the output matrix defined on PxT, such
that /+(p,t): C(t)xC(p) — N \ {0} (i.e., a function from C(t) to Bag(C(p)=N¢®, ¥ (p,t)
e PxT). Elements of /* (/-) are denoted, /*(p,(t,ct)), where ¢; belongs to C(t).
Note: The incidence matrix / of a CPN is defined by /= I* — I~, where
llp, (tcy)) = I*(p, (ter) — I=(p. (t.C1) (2.9)
The elements of the incidence matrix can be interpreted as functions ]
I: C(p)xC(t) — Z

® G is the guard function, defined from T into expressions of type Boolean, (i.e., a
predicate), such that ¥ t € T: [Type(G(t))=Boolean A Type(Variable(G(t))) SC]J.
V teT A VoicjcxeCt)= G&(t) = (cincy (~CuA..) i=j=k
Each G&,(t) is a Boolean function of occurrence-colors, related to the transition t,

where cy is a Boolean variable = —cy = 7 exactly when ¢y = 0 ‘
According to this definition, a standard form of a guard function is described below:

G(t) = G&; (1) VG& () V... (2.10)

® M, is the initial marking of the net. It is a function defined on £, where
Mo(p): C(p) — N (i.e., an item of Bag(C(p)), ¥V p € P). _
M(p) and M,(p) respectively give the number of tokens of each color in the placa
p for the current and the initial marking. M(p) and My(p) can be seen as vectors
which dimensions (cardinality) correspond to the number of places of the CPN. i

Definition 14: A transition t is marking-enabled in a marking M(p) for the occurrence- -
color ¢ € C(t) if, and only if the following condition is satisfied:
VpeP:ZI (p, (tc)) =M(p)

Definition 15: A transition t is enabled in a marking M(p) iff t is marking-enabled and
the corresponding guard G(t) is true. {

Definition 16: Two or more occurrence-colors in a transition t are concurrently enabled
iff their corresponding G&(t) are true. -

i
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Definition 17: The firing of transition t for a marking M(p) and a color ¢; € C(t) results
in a new marking M’(p) defined Vp € P by:

M'(p)=M(p)+I(p,(t,ct)).© (2.11)

Here @ is a column vector of occurrence-colors, called the firing counter vector, corre-
sponding to the occurrence sequence 6 = t;t>...t. It can be seen as a vector of positive
weighted set of transitions with dimension "cardinality of T". The i-th entry of @ denotes
"how many times” the transition t; must fire regarding the respective occurrence-colors
¢t to transform M(p) into M’(p). The term I(p,(t,c;)).© denotes a matrix multiplication.

Definition 18: A set &; is called "basic (standard) color domain” and its elements "color
tones”. &; can be extended to the ring (2, @, ©), where the arithmetic functions @ and
© are executed module s (s is the cardinality of &) /63/, /72/. For example &; is the
set of places of a transport system. Then, &; is defined as set {0y, wp, ..., ws} with s
€ N, whereby the elements w; € £; refer to modeled places of the system /18/.

Note: For a basic color domain Q={w{,0z,...,0n}={1,2,...,i,...,n}, the operations & and
© are defined as follows:

V ae NV ieQ=

wiPa= w4, if o = nji—a else a'=wja—n; if W;>ni_4

wiBa= wj_5 if oj > aelsea'=n—(a—w) if wj<a

Note: The basic color domain 2, ={<®>} is the set which unique element is the discol-
ored token corresponding to the classical definition of marking /74/.

Definition 19: A complex color domain is defined as the cartesian product of two or
more basic color domains.

Definition 20: The universal color domain Q*of the net will be the cartesian product of
all basic color domains 2, j e [1:n]-

That is 2= 17,- € [1:n] QI =0Q; x 25 x ... x$&p then Vo e Q"= 0'= <w7,W02,...,Wn >
Without loss of generality, in this work it is considered that 2,={<e®>}.

Definition 21: The color-functions associated with the arcs of the net are the elements
of the matrix /* (/-). They are defined YV w* € 2" and they are built from the following
basic - standard - functions or their linear combination /23/, /50/: Projection functions,
which select a component ; (color) of an item w”; identity functions, which select all
the components of an item ®"; successor functions, which select some successor of
a component of an item; predecessor functions, which select some predecessor of a
component of an item; decolored function, which transforms a colored marking in the
uncolored token.

1) The projection function
proj(k1,...ki): Q* =T Q), j=1..i; <w=(W1,..,0n) = (W1, ki) >, ¥ KT<k2< ...<ki

2) The identity function
id:Q"—=Q2% <o — o>

3) The successor function
succ(ky): Q2" —=R"  <w=(wq,..,0p) = (@1,..,0kDX,...,0p)>, V k<

4) The predecessor function
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pred(k):2 " —=2%  <w=(wq,...0p) = (01,...0¢OX,...,0p)>, ¥ k >1

5) The decolored function

abs:Q*—=Q, = abs:Q"— {<®>}: <w = wW,=<e>>

Note: Taking into consideration the definition of £,={<e>}, the decolored function
can be seen as the projection function proj(kn).

i
|
|
!

6) It is also possible to build a composition of standard color functions.
a) If succ(k,):2*—Q" and proj(kj): 2" =2 then proj(kj).succ(k):2 -2y =
proj(kj).succ(ky):Q": <w=(wy,...wp) =  (wgDx)>

7) Each of the defined functions can be multiplied by a constant % € N | {0}. This says :
that the colored tokens related to the function are weighted by the value of the
constant.

If proj(kj): 2"~y and % € N | {0} then Fproj(kj): 2"—%y =
Heproj(kj):2": <w=(wy,...,wn) =  (Fowyj)>

For a given basic color domain K with the elements <k> it is possible to compose
successor functions of that color in order to obtain the "ring function R<k>" /21/,

R<k>=succ(kg)+succ(ky) +succ(ks) +...+succ(k)) +...+succ(ky 1) (2.12)

Note: Considering the above definition of basic color domains and color functions, the
colored Petri net used in this work can be classified as commutative colored Petri net
(OCPN) /23/. Commutative nets are a subclass of colored nets which color functions
belong to a ring of commutative diagonalizable endomorphisms. Although their ability
to describe models is smaller than that of colored nets, they can handle a broad range
of practical problems related to flexible production systems /18/, /19/. Commutative
nets include net subclasses such as regular homogeneous colored nets and ordered
colored nets /50/. This work proposes the use of Ordered Colored Petri nets (OCPN)
as specification tool.

The consideration of basic concepts of the functional analysis leads to the graphical ’,
representation of the CPN definitions shown in Fig. 8.

Mathematical representation Mathematical representation Mathematical representation of
of transition’s firing-modes of marking of places the functions attached to the arcs

*(p.(t.e)) /17 (p,(t.ey) |

:m(p

c@

Fig. 8: Mathematical View of Functions, Marking and Firing-Colors of OCPNs {

From the analysis of Fig. 8 following main conclusions are obtained:

e To each transition t € T of the net is attached a set of occurrence-colors or firing-
modes C(t). Each element ¢; € C(t) can be mapped into the set N. :

b

:
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e For each place p € P of the net is attached a set of marking-colors C(p). Each

element c, € C(p) can be mapped into the set N.

To each place p € P and each color ¢, € C(p) a function "marking: m(p, cp)” can
be defined, which gives the multiplicity k € N of this color.

e The functions attached to the arcs of the net I=(p,t,c;) / I*(p,t,c;) map each firing-
/ occurrence-color ¢; € C(t) of a transition t € T into a particular marking color cp

€ C(p) of the place p € P.

Synchronized Petri Nets for Control Purposes

When a Petri net is used as a specification tool of a hierarchical discrete-event control
system, such as presented in section 2.2, the models have to be expanded to synchro-
nized Petri nets. It facilitates the supervision and the interaction of the PN-based control
schema with the other components of the control structure, e.g., the controlled flexible
production environment with the process interface /42/, /115/, as well as with the com-
ponents of the highest level, which are the monitoring and dispatching (real-time deci-
sion system). In such a case, both the enabling and firing of transitions presented in

definitions 14—17 have to be modified and extended.

pi

if m(p1) and [G(t1) A CG(t1)]
then t1 {
t1 is enabled to fire

CG(t1)=ee45
Enabled | G(t1)=[3Ar5]

u(tl)=aj»

suc(24)

p2

C}

Robot r5
L~ %
ojo 3
ofo i F
oy 3
Logic: oo}
if eegs=true |0 | ©
then ol°k
"r5 wait” ydq bt
ojo
ojo
ojlo
oo
ojo
ojo y

Input Output
Process Interface

(a) Production environment controls the net

p1

if t1 fires
then CG(t1)=eeys
m(p2) and u(t1) t1[_ Firing 1G(t1)=[3Ar5]

Robot r5
‘ s
oflo} r\" =
ofo s
o [o [y =
ofo -
ojol’ - :
Logic: oflo §
ifa12=true ofo |
then oie
"5 start” | °|°

p2

._

1

ojo
ojo )

Input Outbu
Process Interface

o
o
.v“‘""“

(b) Net controls the production environment

Fig. 9: Behavior of a Synchronized Petri Net




26 2 Fundamentals

a) Extension of the enabling condition 3
|

Synchronized Petri nets (SyPN) are a class of H-L-PN with external enabling conditions
called "Controlled Guards”.

Let EE={ee;, eey,...,e6,},V ee; € R+{true, false}, i€ N | {0} be a set of variables that
model external events, i.e., their values depend on the compliance with certain opera-
tive conditions coming out from the controlled production environment.

Definition 22: CG is a controlled Guard defined as function from T into expressions of |
type Boolean, such that ¥V t € T: [Type(CG(t))=Boolean A Type(Variable(CG(t))) CEE].

The enabling condition for a transition t € T (definition 15) is now expanded in order
to consider the definition 23.

Definition 23: A transition t € T is enabled in a marking M(p) iff t is marking- enabled
and the following condition is verified:

[G(t) ACG(t)]=true (2.13)
b) Extension of the firing rule

Let A={ay, a@,....a,},V @ € R+{true, false}, ie N | {0} be a set of variables that mode]
technical actions performed in the production environment, i.e., their values define cer-
tain operative conditions generated in the net as control enforcement function.

Definition 24: A control function u for the SyPN is now defined as
uT—+A (2.14)

A set of transitions tCT is said to be a generator of control enforcement functions if
V t € T is defined a function v. :

Definition 25: If the enabling condition (2.13) is true, the firing of transition t € t for
marking M(p) and color ¢; € C(t) produces two synchronized and parallel effects: |

® The progression of tokens in the net (evolution of the net), and

e The corresponding u(t) is generated.

Definition 26 (Execution policy): If a transitions ¢ belongs to a set of generators of

control enforcement functions it fires as soon as it becomes effectively enabled (atomic
firing — one phase firing).

c¢) Conclusion

The philosophy of the synchronized Petri net states that the flexible production system ;
and the Petri net-based discrete-event controller of this system evolve in a closed be-
havior. That is, the evolution of the net will be controlled by the "controlled Guards*®

which values are defined by the production environment, and the real-time evolution of
the flexible production system is controlled by the "control functions u” which values
are defined by the net (see Fig. 9). ‘

Axiom 1: The definition of SyPN does not modify the basic structure of the PN pres-
ented in section 2.5.1, therefore maintaining the set of properties of the net. Also, the
set of firing sequences of SyPN is a subset of the firing sequences of its non synchro-
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nized PN, since the synchronization with external signals and information may inhibit
certain combinations of firing transitions.

Self-Adjusting Petri Nets

They are an extension of the above presented synchronized Petri nets and were devel-
oped for modeling and control special kinds of flexible production cells, i.e., flexible
robot placement systems (see chapter 6). In this kind of nets, the value of the color-
functions associated with some arcs of the net (see definitions 13 and 21) is adjusted
during the evolution of the net by the control function u associated to some transition
of the same net.

Fig. 10 depicts the principal characteristics of the behavior of a self-adjusting Petri net.

Let U={uy, us, ..., u,} be the set of control functions and SU C U, SU={su;, suy,..,
suk} with k<n the set of control functions defined to adjust some color functions on
a synchronized Petri net.

p1: “H :p2t2|| Cps

su(tl)=9;:=12 su(t2)=%;::=5 su(t1)=96j:=12 su(t2)=96;:=5

e %=12 (%.saf ]
t4 Osaf1 D4 C 0.safy | 15 12.safy P4__ D5© 2saf1 15
i t4 I
%=0 %r=0 ;
t6|| 0.saf, pe.Y O.saf, ||t7 0.saf, PEAPID/ O.sah ||t7
U 6
(a) Initial state (b) Transition t1 fires
"O— -0
A Remark:
su(tl)=3%;:=12 su(t2)=%:=5 p1,p2,p3,p4,p5,p6,p7 € P
t1,121314,151617e T
¥%=12_[9.safy | Initial state 7
t4| 12. saf1 12. safr t5 Mg'=[1000000]
| O %=0
Jor=0
g
t6 || 5.saf PG 5sahb || t7
U
(c) Transition t2 fires
Fig. 10: Behavior of a Self-Adjusting Petri Net
Definition 27: saf is a self-adjusting arc function, defined as

9c.saf: PxT — N (2.15)
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For the initial state of the net, the value of ; is {0}. When the net evolves the valye
of %; will be determined by a su, associated with some transition & of it. A new valye
for 9; will be defined as soon as the transition ¢, fires.

For the purpose of this work it is essential to develop Petri net-based models of flexible
production systems which fulfil the essential set of properties highlighted in section

2.5.4. For this reason, in addition to the definition 27, an important feature has to ba
considered when modeling with self-adjusting synchronized Petri nets. :

Axiom 2: In a self-adjusting Petri net there is always a pair of arcs with the same self-ag- |
justing arc function G.saf. The models must verify the so called property conservat:ve.
ness [74/ (see section 2.5.4).

Temporized Petri Nets

They are introduced in order to extend PN modelling and analysis potentialities for the
evaluation of system performance. For this purpose, the time factor is incorporated to
the former definition of Petri nets. Several different approaches have been proposed in
the literature /44/, /69/, /70/. The main alternatives that characterize the different propos- ]
als are: a) the PN components (either places or transitions) to which is the time
associated; b) the semantics of the firing in case of timed transitions (either atomic
firing or firing in three phases); c) the nature of temporal specifications (either determin-
istic or probabilistic). In the following a kind of Temporized Petri Net developed to be
specially used for the modelling and analysis of flexible production systems will be
highlighted /22/.

Definition 28: A Temporized Petri Net (TPN) is a pair <MPN,I'> so that MPN corre-
sponds to the definition 3 and I' is a function which assigns a non negative real number
yi to each transition, I: T —+ R*. ‘

¥ = I'(t) is called the firing time for transition t; € T and can be defined as y; = dy; +

rand(¢;) with parameters duy;, &; € R*. The function rand(é;) multiplies the parameter
d; by a positive real number taken from interval [0,7]. This function introduces into the ;
model a stochastic — random - firing delay for each temporized transition of the net.

The marking evolution rule is the same as for the formerly defined MPN, excepting that
the firing of ¢; lasts y; time units /22/. The existence in the model of random firing delay
times requires the definition of the TPN execution policy for each temporized transition.
A discussion on the effect of firing policies is contained in /9/. In this work is used a
race policy with enabling memory. Whenever a change of marking enables a set of
transitions, which were not enabled since their last firing, an algorithm, implemented
to solve conflicts among enabled transitions, must be called to assist the net evolution.
Upon solving the conflicts, the execution policy is applied to each effectively enabled
transition. According to the adopted execution policy, whenever a new marking is en-
tered, each effectively enabled transition ¢ samples an instance of the random firing
delay from the associated y; = du;, + rand(d;).

Axiom 3: Transitions compete for firing. Among the set of enabled transitions, the com- :
petition is won by the transition that samples the shortest delay time.
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Because of this rule, immediate transitions (y;=0) have priority to fire over timed transi-
tions. If two or more enabled transitions have identical delay time, they fire together.
Enabling memory indicates that the re-sampling is performed only after the transition
becomes enabled. The transition which samples the minimum firing delay is the one
which firing determines the change of marking: the sojourn time in the marking is equal
to the minimum sampled delay time of the enabled transitions. The new marking is
obtained through the rules of the underlying untemporized PN; the process is started
again.

Note: The methodology, which must be adopted for modeling with the proposed TPN,
does not allow to disable one enabled transition if another one (concurrently enabled)
fires before. The models must verify the so called persistence property /74/.

Since the transitions fire in three phases, a transition ¢ immediately starts firing pro-
vided it is effectively enabled, it sets a timer at the value of its sampled delay instance,
and it removes tokens from its input places . Tokens, however, are not deposited into
the transition output places ¢+ until the transition delay y; had elapse, and its timer had
reached zero. Tokens are kept in the transition during the entire transition delay. Just
upon transition firing, the previously removed tokens are deposited into the output
places t-. The token-game of the TPN is graphically described in Fig. 11.

ta @ N O rs
P4 /ﬂ\
_‘—O P2 P2
P1 ty P1 t4
P3 P3
a) Initial state: b) Immediately after: ;
p1 becomes occupied an algorithm solves the conflict i
t; and t, are in conflict t4 is enabled and remains so during
y1 time units
p1 will remain undisponible
t ‘lz 1
O —O
P2 @
t i
p1 (0— P1 |
P3 P3
c) After y4 time units: d) Immediately after:
ty can fire ty fires
p4 still remains undisponible p1 becomes free

p2 and p3 becomes occupied
Fig. 11: Token-Game of the TPN

Note: The use of TPNs for modeling a given system allows carrying out a faithful study
on the system's behavior. This stage of the analysis is reached by previously qualita-
tively analyzing the original non-temporized PN. The PN temporizing does not modify
the basic structure of a net, therefore maintaining the set of properties of the net /44/.
Also, the set of firing sequences of a temporized PN is a subset of the firing sequences
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of its non-temporized PN, since the timing information may inhibit certain combinationag

of firing transitions.

2.5.4 Analysis Methods and Properties of the Nets §
A major strength of Petri nets is their support for analysis of many properties and prQb\%
lems associated with the modeled systems /60/, /74/, /101/. Basically, two kinds of
analysis can be made: the qualitative and the quantitative analysis. The first one Veriﬁes'
the compliance of certain properties of the net. The quantitative analysis is often calleg
performance evaluation, and it takes into account system specifications, theriawnhi
checking the system’s compliance with desired performance indexes. A detailed dis.
cussion about quantitative methods is beyond the scope of this work. For more details
about this kind of analysis, the references /22/, /44/, /69/, /70/, among others, can be
consulted.

Qualitative Analysis Methods

Methods of qualitative analysis used in this work are: a) the coverability (reachabllny)
graph method and b) the topological-based approaches.

a) The coverability Graph

It is based on the simulation of the token-game of a net (without time specuﬁcatlons)
and it can be summarized as follows: given a PN (or any extension of them), from the
initial marking Mp, it is possible to obtain as many "new" markings as the number of
the enabled transitions. For each new marking, the process has to be repeated. This
results in a graph representation of the markings (a labeled directed graph). Nodes
represents markings reached from M, (the root) and its successors, and each directed
arc represents a transition firing sequence, which transforms one marking to another.
The main idea behind the coverability graph is to construct the set R(M,) as given m

the definition 10 by means of simulation /74/. |

The simulation of the evolution of a net performed to obtain the set ®(Mp) can be
supported by using CAD systems or it can be totally manually (e.g., performed on a
blackboard, on a sheet of paper, or in the head of the modeler) /59/. A properly de- f‘;.i
signed simulator is useful for operational and performance studies with corresponding
visualization of results in the token-game of the net /16/, /20/, /58/, /60/, /86/.

b) Topological approaches 3

These methods are based on Linear Algebra, Functional Analysis and Graph Theory. ;
They exploit the fact that, regardless of place markings, both the PN structure and
topology contain a good deal of information that can be used to verify some desirable ;
properties of the net. *

b1) Study of the state transition equation: The basic idea behind this method is to ﬁnd
a set of equations and inequalities derived from the state transition equation (see deﬁnl-
tions 12 and 17) which characterize all reachable markings and some firing saquences

of transitions.
Definition 29: Let us consider the equations system
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xT.1=0 (2.16)
If x=v is a solution of (Eq. 2.16) and if (Eq. 2.5) is multiplied on the left by v7 then

YV M,Me RMy)=>VvI.M=vI.M+vT./.© (2.17)
The set of place-flows (p-flows) E of a PN is defined by

E={v/vli.l=0} (2.18)
The resulting equation

vi.M =vi.M (2.19)

is called a linear invariant of markings (place-invariant relationship). This says hat the
sum of the tokens weighted by v is constant.

Definition 30: Let us consider the equations system
ly =0 (2.20)

If y=v is a solution of (Eq. 2.20), where v is a vector of a positive weighted set of
transitions with dimension cardinality(T) , the (Eq. 2.5) can be written

M'(p) = M(p) +1.v (2.21)
then

Y M, Me RMy) = M(p)= M(p) (2.22)
The set of transition-flows (t-flows) D of a PN is defined by

D= V(S = 03 (2.23)

The resulting equation is called a linear invariant of firing (transition-invariant relation-
ship).

Note: A place-invariant of a net is an assertion that holds at every reachable marking,
and a transition-invariant is an equation which is satisfied for some sequence of firing
of transitions /74/.

Definition 31: The set of places (transitions) corresponding to non-zero entries in a
place-flow (transition-flow) is called the support of an invariant. A support is said to be
minimal if no proper non-empty sub-set of the support is also a support. Given a mini-
mal support of an invariant, there is a unique minimal invariant corresponding to the
minimal support. The set of all possible minimal support invariants can serve as a
generator of invariants. That is, any invariant can be written as a linear combination of
minimal support invariants /101/.

Note: The structure of a transition-support (i.e., transition-flow) does not preserve the
firing order of transitions.

Many results on structural analysis of PN and H-L-PN using the information contained
in the state transition equation have been already published /60/, /101/. The approach
followed here is based on the calculus of place- and transitions-flows of PN and also
the symbolic computation of a family of generators of flows in H-L-PN-based models
of flexible production systems /18/, /21/, /22/. A detailed discussion about the method
is beyond the scope of this work. It is based on mathematical properties of the color
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functions of commutative nets, which belong to a ring of commutative diagonalizablg
endomorphisms and more details about it can be found in /23/, /50/.

b2) Detection of Siphon and Traps: It is a group of structural analysis techniques baseq
on the identification of subsets of places of a net with particular properties /74/, /101

Properties of the Nets

By means of the above enumerated analysis methods it is possible to prove that g
given model has a set of desired properties.

Basically two types of properties can be studied with a Petri net model: a) those de. |
pending on the initial marking (marking-dependent or behavioral properties), ang b)
those, independent of the initial marking, called structural properties. ‘

Note: Only properties of Petri net models with high significance to flexible Productio ‘
systems and their analysis problems will be here described. n3

a) Behavioral properties

Reachability: A marking Mn is said to be reachable from a marking My if there o

a sequence of firings that transforms Mp in Mn (see definitions 9 and 10). The - Stsv_;.
ability problem for a Petri net is the problem of finding if Mn € R(Mp) for a given macm ;
ing Mn. It has been shown that the reachability problem is decidable although i takrk‘ g
at least exponential space (and time) to analysis. es

Boundedness: A Petri net is said to be k-bounded or simply bounded, if the ny,
of tokens in each place does not exceed a finite number k for any marking reac
from My, i.e., M(p)<k, Vp € B YM € R(Mp). A Petri net is said to be safe,
1-bounded.

Liveness: A Petri net is said to be live, if, no matter what marking has been reacheq
from Mp, it is possible to ultimately fire any transition of the net by progressing thrg,,
some further firing sequence. This means that a live Petri net guarantees deadlock.
operation, no matter what firing sequence in £(Mp) is chosen.

mber
'hable:‘,
if it is i

frea

Reversibility and Home State: A Petri net is said to be reversible, if My is reachable from
M, for each marking M € R(Mp). In a reversible net one can always get back to the
initial marking. The reversibility condition can be relaxed with the definition of a home
state:;)marking M’ is said to be a home state, if M" is reachable from M, for each py
€ R( 0/- :

Persistence: A Petri net is said to be persistent, if, for any two enabled transitions the
firing of one transition does not disable the other. : :

b) Structural properties derived from the analysis of invariant relationships, and siphons -\
and traps. :

Controllability: A Petri net is said to be completely controllable, if any marking is reach-
able from any other marking. This implies that Rank(l)=m (cardinality of P)(necessary
condition).

Structural boundedness: A Petri net is called structurally bounded, if it is bounded for
any finite initial marking Mp.

3
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Conservativity: A Petri net is said to be conservative, if Vp € B 3 v(p) € Z so that the
weighted sum of tokens of Eq. 2.19 is a constant, for every M e ®(Mp) and for any fixed
initial marking Mp.

Repetitivity: A Petri net is (partially) repetitive, if, and only if there exists a marking Mp
and a firing sequence 6 from M, such that every (some) transition occurs infinitely often
in 6.

Consistency: A Petri net is said to be (partially) consistent, if there exists a marking Mp
and a firing sequence 6 from M, back to M, such that every (some) transition occurs
at least once in 6.

2.5.5 High-Level Petri Nets vs. other Tools in Design and Implementation
of Discrete-Event Control Systems

The goal of this section is to identify open problems which are to be solved by the
design and implementation of DECS and to highlight the advantages of using H-L-PN.
Below will be reviewed the main characteristics of the most used tools for modeling
and control of the lowest level, i.e., coordination and logic control, of the hierarchical
DECS architecture presented in Fig. 4.

One of the main weaknesses of actually implemented DECS is based not on the hard-
ware of the FPS/FPC but on common programming and modelling description tech-
niques for the components of the control structure. These differ in terms of modelling
and analysis power, reusability, agility, flexibility and clarity, among others.

In order to classify the most common description techniques and programming lan-
guages towards their usability for coordination and logic control purposes, four needs
were distinguished by /26/:

e Sequency: especially in systems with a large state space it is necessary to describe
the sequence of states.

e Concurrency: for an easier understanding and simplicity of the system’s dynamical
behavior, concurrent behavior should be taken into account.

e FEfficiency: given a state of the system, only a few inputs may affect the state and
only a few outputs may be changed. No more than the behavior corresponding to
these input changes should be specified.

e Clarity: have a clear understanding of the input-output behavior of a logic controller,
i.e., what is the control applied to the process.

Especially very large and complex DECS that can, for example, be found in FPS have
high demands in terms of modelling power and need to be supported methodically in
order to keep the models tractable and safe. As a consequence, new needs are now
introduced:

e Complexity: given a specification with many instances of the same type of submo-
dels, the description method should allow the reduction of complexity by melting
these submodels into only one model.
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Testability: in order to obtain safe and reliable logic controller models it is absolutely,
necessary to make sure that certain properties of the model of the logic controllgy
can be guaranteed (e.g., deadlockfreeness). This can be particularly well done by
means of formal validation and simulation techniques. Under test are both the cor.
rectness of the model itself and the conformity of the model with its specification_

Flexibility: the production systems degree of flexibility highly depends on the inte.
grated control system, i.e., the efficient reconfiguration of controllers. As a conse.
quence, requirements related to the controller software comprise reusability ang
modularity of logic controller software, as well as portability among different harg.
ware platforms.

In order to fulfill these requirements, is supporting of the demanded needs mandato
for a modeling tool. An overview is now performed on some modelling methods of thg
components of a DECS at both, coordination and logic control level. Further informa.
tion on the definition and use of these methods can be found by other authors /5/, /27,. |
/48/, /57/, 92/, /97, ]102/. ?

The following two techniques are completely hardware-independent: |

The next four forms of description are more hardware-dependent, and widely used for ;

s
A state table contains all the possible internal states, and is therefore only applica.

ble for the accurate analysis of very small systems. According to /26/, none of thg 1
first four above listed needs is fulfilled.

A state diagram is more concise than a state table. However, it lacks in the repre.

sentation of concurrency, as it is very hard to identify such parts of the system
which are (partially) independent of each other. Compared to a state table, it allowsg

a clear representation of sequential behavior (need 1).

the specification and programming of code for almost every PLC-based implementa. j

tion:

3
LD (ladder diagramm)
In this model the concurrency can be exploited, but the sequential nature of the i
behavior remains unclear. Due to the fact, that concurrency is not graphically repre- ?

sented, RLL do not seem to be a suitable tool in terms of modelling logic controllers 1
(need 2 partly fulfilled). :

Function Chart
Contrary to the RLL, symbols are used to represent logic operations such as AND, f
OR, and so on. The main advantage of this model is that it is wide-spread and
well-accepted among mechanic and electronic specialists as well. Symbols such as
flip-flop’s allow the representation of sequential processes (needs 1 and 3 fulfilled), }

Instruction list

An instruction list is a sequence of assembler-like statements that allow translating -
of the logic, represented by the above mentioned Function Chart in a straightfor-
ward manner. By means of variables with representative names, it is possible to
express the sequential behavior of a process in an adequate manner. Further, it is

b
Eo)

]
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possible to use elements that allow structured programming of the logic controller
software (needs 1 and 3 fulfilled).

Function block diagram

Function block diagrams are well-established and a good choice for the control of
discrete event systems, if only the classical description techniques and languages
are considered. It consists of three basic elements "step”, "condition for switching
to the next step” and "statement”, all of these possess a clear graphical representa-
tion and thus allow clear understanding of logic controllers with a low share of
concurrency. The main disadvantage is, that concurrent behavior can not be repre-
sented (needs 1, 3 and partly 4 fulfilled).

Programming languages of the IEC 1131

The standard IEC 1131 defines four languages, Instruction List (IL), Structured Text
(ST), Ladder Diagram (LD) and Function Block Diagram (FBD). Apart from ST,
these programming languages are almost identical with those listed above and
fulfill the addressed needs. In addition to this, all of them fulfill need 7, because the
portability and reusability of code is supported with the standardization /61/, /85/,
/106/ (chapter 7 describes the IEC 1131 more in detail).

The efficient programming of logic controllers demands the fulfillment of all of the
above mentioned needs. The next three methods can be classified as model-based
techniques which are well-known for their capability in modelling concurrent systems.

e H-L-PN provide a unified method for design of FPS from hierarchical system de-

scriptions to physical realizations /28/, /102/, /117/ with the following advantages,
among others: 1) ease of modeling discrete-event systems characteristics: concur-
rency, asynchronous and synchronous features, conflicts, mutual exclusion, prece-
dence relationships, non-determinism, and system deadlocks /4/, /11/, /55/, /112,
/118/; 2) excellent visualization of system dependencies; 3) management of local
and global information; 4) bottom-up (modular composition) and top-down (step-
wise refinement) design methods; 5) ability to generate supervisory control code
directly from the graphical H-L-PN representation; 6) ability to check the system for
undesirable properties such as deadlock and instability, and to validate code by
mathematically-based computer analysis /18/; 7) performance analysis without sim-
ulation is possible for many systems, production rates, resource utilization, reliabi-
lity, and performability can be evaluated /22/, /70/; 8) discrete-event simulation that
can be driven from the model /38/; 9) status information that allows model-based
real-time monitoring; 10) useful scheduling, because the model contains system
precedence relationships as well as constraints on discrete-event performance /39/.

Grafcet is analogous to Petri nets, if places are substituted by "steps” /1/, /25/. The
Grafcet structure is an interpreted "logic” graph in which the "etapes” work as flip-
flops (in Petri nets the places work as "counters”). According to /26/, needs 1 to
4 are fulfilled. However, most of Petri net analysis techniques (p-invariants, reduc-
tion rules, etc.) cannot be applied, if the Grafcet rule "in case of a conflict among
transitions, all transitions are firing simultaneously” is used /102/. Due to the
straightforward representation of concurrent actions, Grafcet was generally ac-
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cepted as an international standard and is now widely spread in industrial applica.
tions. Need 7 is not fulfilled as the input/output locations are statically assigned in
Grafcet. |

e Colored Petri Nets (CPN) possess the same structure as Petri nets (need 1, 2 and |
6) /59/. The model is extended by features such as colors, functions and guards |
(see section 2.5.3) in order to allow the reduction of complexity by melting equally- |
structured sub-models into only one sub-model (need 5).

Although Petri nets and colored Petri nets allow the modelling of coordination and logig |
controller specifications, they are not intentionally designed for that purpose. In order - |
to specify DECS with Petri nets or colored Petri nets, it is necessary to adapt the behay- ;
ior of the net in an interpreted manner. Considering this extension, need 3 and 4 are
fuffilled for both, modified Petri nets and modified colored Petri nets. These were ex.;
plained more in detail in the previous sections. ;
The control structure proposed in this work adapted to a colored Petri net logic contrg) |
scheme allows the fulfiliment of needs 1 to 6. Need 7 is partly fulfilled by generating
IEC 1131 code from the proposed CPN-based control structure, as will be describeg
in chapter 7.

Fig. 12 summarizes the evaluation of the above mentioned models and languages. As
Petri net and colored Petri net models are not intentionally designed for control pur
poses, they are highlighted and not rated concerning needs clarity and flexibility.

Sequency
Concurrency
Efficiency
Clarity
Complexity
Testability
Flexibility

Criterions: @ fulfiled © only partly fulfilled O not fulfilled
Fig. 12: Degree of Fulfillment according to different Needs for a DECS

2.6 Summary

The main characteristics of flexible production systems and their control systems, i.e.,
discrete-event control systems, were highlighted, after going through a description and
some motivational examples of different production structures.
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Most of the widely accepted approaches related to the applicat_ion of the Petri net
theory in the field of production engineering are overviewed. and d:s;ussed. New ?ort:
of High-Level Petri nets, i.e., parametrized Petri nets and their exter!smns, werg de llr\de
and proposed as mathematical-graphical tool to perform the modglmg. analysis, vali a“
tion and implementation of flexible production systems and the.lr control sy§tems. |
was shown how recent and on-going research in the field of Petri ne?s and ngh-Levg
Petri nets fits into a new framework proposed in this chapter and |ssugd along this
work, which intends to solve many important problems arising in production engineer-
ing from the point of view of control and systems theory.

The chapter concludes with an evaluation of design features of exist_ing toofIs"anq a
comparison of them with the Petri net-based techniques proposed in the following
chapters.




3  Formal Specification of Flexible Production Systems
using High-Level Petri Nets

Petri nets and extensions of the original definition, e.g., High-Level Petri Nets (H-L-p

have been proved to be specially adequate for formally specifying parallel and dlstnb}
uted systems such as flexible production systems /21/, /71/, /115/, /117/. Moreover, tm\
kind of graphic-mathematical tool have a well-founded theory of analysis that allowﬁ
investigating of a great number of modeled system’s specifications. The attention 0\
this chapter is pointed to an unique approach based on the theory of H-L-PN able QQ\
help solving a big set of design problems with regard to a formal specification of flex.
ible production systems. g

Below are overviewed the main concepts and definitions related to H-L-PN and the,,
interpretation when applied to flexible production system'’s design. Here are presenteq
methods and concepts, which are used to formally specify FPS by means of H-L-p

and to validate system's specifications by means of the analysis of the models. A meth,’i
odology for the formal specification and validation of functional and performance spegi,'i
fications using qualitative and quantitative analysis of H-L-PN models of FPS jg
introduced. Finally, a methodology for designing a H-L-PN-based model as skeleton qﬁ
the FPS coordination control system is proposed and applied to comprehensive exam.
ples of FPS. ]

3.1 High-Level Petri Nets and Flexible Production Systems

It is very important to take into account that the main functions of production systems,
whether flexible or not, are to input raw material, to perform a certain number of trans.
formational tasks (i.e., to assemble, disassemble and/or machine parts) and, finally, to
output finished parts. Therefore, the designer has to identify the input and output se.
quences of material parts, and all elementary operations which must be carried out on
these parts, and the main characteristics of the resources (i.e., turning, machines, ma.
nipulators, AGVs, etc.) involved in each of these operations. In additions to this, all the
resources and operations must conform to the following set of constraints [Hardeck
85]:

® The operation are completed in finite time, and they can be decoupled from M
point of view of their time specifications.

b
4

e One part is submitted to only one operation at a time, and each resource ca
perform only one task at a time.

e One separate part can be submitted only to transformational or informational fune-
tions. A transformational function consists of modifying the physical attributes of the'
part (shape, constitution, surface, etc.). They are the machining functions: turning
milling, manipulation, assembly, and conditioning functions: chemical treatment,
painting, washing, etc.. An informational function consists in verifying that the op-
erations have been accomplished correctly. :

&

j
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The large increase in the number and type of flexible manufacturing and assembly
systems (FMS/FAS) being designed and installed has lead to the development and use
of a great number of tools which main objective is to reduce the design-time and the
costs associated to the implementation phase of the systems. The complexity resulting
from the inherent non-linearity, the state space dimension found in most of these sys-
tems and problems depending on several characteristics such as flexibility, productiv-
ity, agility, costs, required raw materials, human and other resources of the systems,
leads to unusual difficulty in design and analysis. With improper design, these systems
are prone to deadlock, overflow and degraded performance /117/.

Taken into account the last considerations, methodologies and tools for study and
CAD-design are necessary to learn the interactions between different factors for fast
and effective evaluation of the qualitative (functional) and quantitative (performance)
properties of a set of possible solutions /22/, /67/, /102/.

In the author's opinion, it is very important to perform the modelling, the analysis and
the implementation of FPS simultaneously, because none of these processes can be
independently adequately developed. In order to achieve the goal, it is interesting to
recall that the major advantage of Petri nets is the use of unique family tools from the
first stage of design until the code generation for the real-time computer-based control
of the overall FPS /102/. The static specifications and the dynamic behavior of a com-
plex discrete-event system, like FPS/FPC, may be readily visualized through H-L-PN,
which can simulate the system'’s evolution, analyze its synchronism, describe task con-
currency and parallelism, and verify the reachability of a state by means of mathemati-
cal analysis and/or simulation. Besides having all the above characteristics as a model-
ling tool, the H-L-PN model of the systems may be used for its qualitative - functional
- and quantitative - performance - analysis, thus becoming an advantageous instrument
for validation during the design process of FPS. Indeed, through model validation and
verification with H-L-PN, the user of the FPS can rearrange system specifications and
objectives due to the easy descriptive characteristics of this graphic-mathematical tool
(computer aided engineering (CAE)).

3.2 Modeling Flexible Production Systems with H-L-PN

As stated in chapter 2, section 2.3.1, four kinds of knowledge are mainly necessary for
performing the design and modeling of FPS and their DECS with H-L-PN:

(i) Available resources

Resources of a FPC can be described independent on how they are used by a set of
physical properties. For example, physical properties of a transport system include its
dimensions (e.g., number of places) and transfer mode (e.g., dynamic First-Input-First-
Output, static Last-Input-First-Output, etc.). Resources have port-structures to repre-
sent "places” at which other resources can be attached, e.g., typical port-structures for
a transport system include input-port and output-port. More important is the fact that,
constraints can be specified at these port-structures that limit which resources can be
attached there. Typically, these constraints would describe properties of the resources
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that can be connected at that port-structure or more specifically properties of a port.?
structure of another resource.

(i) Functional architecture

:
V
A functional architecture specifies a functional decomposition of the FPC and its contrqi
system and constraints on their composition. For example, a functional architecture Dté
the controller of a store system has to specify: (a) necessary functions such as storg
strategy, number of places; (b) constraints on their composition such as, "how the
store is accessed by a part”, "which addresses are available”, "how can parts leave tha!
store”; and (c) constraints on how other functions may be composed with the reqmreqi
functions, e.g., constraints on connecting the store to other components of a produe.
tion system. For example, the transfer of a pallet from one transport system to the storg
is an operation which may be generated by the coordination control component as g

sequence of functions of local-logic controllers of the transport system and of the store

(iii) Relation between functions and resources
‘!

In general, the mapping between functions, which are to be done in the system, and‘
the resources is many-to-many. A function can be implemented by a set of resources, "
On the other hand, current resources are often multi-functional (e.g., a robot can load'
a machine from a transport system, it can assembly parts, it can also unload the ma.
chine, etc.).

(iv) Characteristics of a distributed architecture

Lack of global control requires particular means of communication, synchronization,
agreement and consensus. Typical examples of these characteristics include the orga.
nization of mutual exclusion, distributed termination detection, etc.. :

Inspired by other reports of the author (see for example /18/, /19/, /21/, this work en.
lightens new ideas, by considerably improving and generalizing the formalism, neces.
sary to develop a generic model at the job release, flow management, and local contml%
levels of flexible production systems. This formalism is based on the use of a specid”'
kind of colored Petri nets tailored for control purposes, and the basic concepts of both,
mutual exclusion and structural theories /23/, /50/, /109/, /117]/.

3.2.1 Modeling Method

The use of High-level Petri nets (e.g., colored Petri Nets-CPNs) makes possible thg
creation of compact representations of states, activities, data and events. Neverthaless,;f@
a large model can make it difficult to handle the complexity of the modelling, as walk"‘
as the analysis of its properties /24/. The solution of this problem is considering “"3,
system as a set of basic modules from which it can be constructed by composition in'
a bottom-up manner. A modular approach allows considering different parts of tm‘
system independently of one another and also reusing the same module in different’
systems. The modular modeling method presents also the possibility of composing
analysis results of the individual modules, in order to obtain results which are valid for
the entire model of the system /21/, /102/.




3 Formal Specification of FPS using H-L-PN 41

The method used to develop the CPN models is based on the notion of production-
and information flow-preservation and the formal analysis of specifications of the FPS.
The specifications of the system can be considered as a list of resources and a list of
operations and their desired relationships, together with a description of the way the
system is intended to behave /117/.

3.2.2 H-L-PN Model of System Resources

The resources of a FPS include machines, manipulators, buffers, pallets, parts to be
processed, and/or products and so on. They can be further divided into two classes:
the first one has fixed number of components, e.g., machines, robots, conveyors; the
second one has varied number of components, for example, pallets, fixtures, and parts
or jobs to be processed /117/.

An operation to be performed in the FPS generally needs both kinds of resources and
the completion of it must preserve the flow of parts and information.

This section presents a modular approach for modelling both kinds of resources and
also the operations performed by them, using High-Level Petri nets, e.g., Ordered Col-
ored Petri nets (OCPN).

Using Ordered Colored Petri nets (OCPN) as specification tool, the proposed model-
ling method requires the application of the following basic steps:

e specification of basic color domains and its elements (color tone) (this step maps
color tones of a basic color domain to each of the relevant characteristics of the
modeled resources, e.g., places of a buffer, sequence of tasks, kinds of processed
parts, different types of machines, etc.);

the universal color domain Q" and other complex color domains must be built;
defining functions 1*(p,(t, cy))/I-(p.(t, cy) associated with the arcs of the net;

defining Guards associated to some transition of the net;
® synthesis of the net structure.
So, in a first stage and taking into account that:

e transitions and their corresponding firing-modes (occurrence-colors) model opera-
tions and events taking place in the real environment, which leads to a change of
the system's state, and

e places and their colored markings model states of resources and information about
them (herewith can be expressed preconditions for the occurrence of operations
and events),

the modeling of a resource of flexible production systems can be summarized as fol-
lows:

1) Identify the operations and states of the resource which are required for the produc-
tion of one item of each manufactured product.

2) Arrange operations, i.e., activities, by the precedence relationships as given in the
process plan of a product.
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3) For each operation, a transition of the H-L-PN model is drawn, and firing- m0des
(occurrence-colors) for the transition are defined.

{
!

4) In this order: create and label places to represent the states of a resource busy
(before and after performing a task, i.e., operation); create and label a place to repre-
sent the free-status of that resource (monitor place /9/).

5) Connect each place with an arc from and to the corresponding transitions, acccrd.
ing to the precedence relationships as defined above. Corresponding function must be
associated to each arc of the net. The function, associated with an arc, models tmﬁ
information- and/or part-flow, e.g., production-flow, throughout the net. |

6) Specify the initial marking of the net according to the initial state of the modelecfé
resource. Multiple tokens in a place will indicate a multiplicity of resources or parts, for
example, in a buffer-free place, three tokens might represent three positions of a buﬁar ]
being free at the same time. In the case of H-L-PN models, three tokens, with dnfferam
attributes, model three positions of a buffer /19/.

The second class of resources (with varied number) plays a special role in the re.
source-sharing environment /117/. In order to avoid deadlocks and overflows, the ap.
propriate number of initial tokens of the places (initial marking), which model the states

of such a resource, has to be carefully defined. For example, the definition of an upper
bound for pallets, which has to be loaded into one buffer, can help to avoid deadlocks
(some unused space is needed to re-manoeuvre the pallets in case of a temporal
deadlock within another resource of the FPS /104/). :

When the net is executed, a token in a place (busy state of resource) will indicate that
the resource becomes busy. When the net is executed, a token in a place (free state
of a resource) will indicate that the resource becomes free. During the net evolution,
the marking of the places, resource's free-state and busy-state, have to be found in
mutual exclusion relation.

In the second stage is performed the mapping from each port-structure of the resoume;’f
to transitions and to occurrence-modes of the OCPN model. This is because, all the
ways that a resource can participate in the structure of a flexible production system are
those that lead to the functions of the resource, defined by the architecture of the sys.
tem. These functions are the exchange of information and parts between resources,
and are modeled as operations, i.e., transitions or their occurrence-modes.

Below, as an example of application of the above defined 2 stages modeling approach, '
is presented the behavioral OCPN model of a kind of LIFO storage and a workstattom
e.g., machine.

Tt e s e S e S

Specifications of a Dynamic LIFO Storage

A LIFO storage receives items (parts, messages), and in the opposed order delivemj
them (LIFO: Last Input, First Output). Before module, there is a producer system (typg
of items stored in it). After module, there is a consumer system of these items. No
restrictive hypotheses are made regarding the nature of the items transferred into th|
module under study.

3
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This resource is identified as dynamic storage due to its self-motion.

During the storage’s loading sequence the items enter it via the last (n-th) position.
They will be then transferred from one position to the preceding one. This transfer
process goes on, as long as there is a free position in the storage, until the items arrive
at the free position nearest to the last loaded position.

During the storage's unloading sequence the items are transferred from the first busy
storage position, which is founded into the storage to the next one. This transfer pro-
cess goes on until the items arrive at the last (n-th) position of the queue. Finally, the
items leave the storage from this position, to the exterior, which releases them.

The main characteristic of this module is, that there is a transfer of items between two
consecutive positions, during both sequences: loading and unloading of thg moc.lule.
The storage has n positions and each of them has capacity for storing a single item

n._n

X

To help depict above considerations Fig. 13 shows a scheme of such a storage.

input-port output-port

load l Tunload

X (part) l X

[ I

' I
11; X

X

X 1P X X X

114 | X X X X
loading unloading

Fig. 13: Dynamic LIFO Storage

Modeling of the Storage

In order to design a CPN model and to verify the above described specifications, it is
necessary to consider the loading and unloading operations as a set of places and
transitions which model push-pull operations. Furthermore, both operations must be
performed in mutual exclusion relation. The above points lead to the OCPN model of
Fig. 14, which is a faithful reflection of the preceding considerations.

The basic color domains associated with the firing of transitions and with the marking
of the places, the transitions, the places, the color functions of the net, the guards, and
the initial marking of places are described below.

i I ins:
L7 (set of storage positions)={</1;>, 1<i=n} basic color domain, where </7;> is the
position i in the storage

P = {py, k € [1:m]} set of parts to be transported on the LIFO
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{<e>} basic color domain, where <e> is the uncolored token /74/.

first loading position
proi(1).succ(11) proj(1)

2 | £
—E- 1. proj(1) pIANGE/. proj(1).succ(1y) r- -ﬂ;

' input v
E load proj(1) p2 ree positions proj1 3::323{
\ {Z <, >} t5 |,
proj1) (M)
roj(1
roj(1).succ(14) P “ﬁ); id
proj(1).pred(1) .-ﬂcﬂll)—( PS5
| transfer transfer id \
id id
) ) L
t2 busy positions i 14
id o p3 id
abs s p6 ~ abs
[<o>) :
abs Upush-pull abs

Fig. 14: OCPN Behavioral Model of the Dynamic LIFO Storage

Q*=L1xPx{<®>}={</1;,pr, <®>>}, universal color domain.

The element </7;,p,, <®>> means, that there is a free position in the storage to .,_ 
loaded by a part pg, or that there is a busy position to be unloaded. ;

Transitions:

T={t1, t2, t3, 4, t5, t6}

t1: models the operation "start of a push operation”
t2: models the operation "end of a push operation”

t3: models the operation "transfer an item p, from the storage position, </7;>, to t
preceding position, </7;_4)>, during the storage's loading sequence” i

t4: models the operation "start of a pull operation”
t5: models the operation "end of a pull operation”

t6: models the operation "transfer an item p, from the storage position, </7;>, to t ;
next position, </7;44)>, during the storage’s unloading sequence”.

Places:
P={p1, p2, p3, p4, p5, p6}
p1: if marked means the position nearest to the last loaded storage position is free.
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p2: if marked means the positions in the storage are free.
p3: if marked means the positions in the storage are busy.

p4: if marked means the positions during the storage’s loading sequence are transitory
busy.

p5: if marked means the positions during the storage’s unloading sequence are transi-
tory busy.
p6: if uncolored marked means whether push nor pull operations are being performed.
It is also called mutex.

ndar lor functi
e Projection function:

proj(1): Q°— L1 / proj(1).<I1;,px, <®>>=<I1;>
e |dentity function:

id : Q°=Q" | id.<I1;,pc, <®>>=<I1;,pr, <®>>

® Successor function: oy
succ(1y) : R°—Q" | succ(1q).<I1;,px, <®>>=<I1(11),Px, <®>> if i<n,
<I11,px,<®>> if i=n

® Predecessor function: b
pred(1;) : Q"—=Q" | pred(1;).<I1;,px, <®>> = <I1i_q),Px, <®>> if i>1,
<I1,,px, <®>> if i=1

® Decolored function:
abs: Q"—>{<e>} | abs.<l1,p, <®>> = <e>

e Ring function:
R<I1;>

Initial marki f pl :

e p1is initialized with value my(p1)=</1;>, because this work proposes to begin the
storage loading process onto this specific position.

® p2 is initialized with value mp(p2)=2; <j<n </1;>, because the storage has n free
positions.

e p3 has initial marking 0, that means, it is unmarked, because the storage is empty
at the beginning of its work.

e pé6 is initialized with the marking mp(p6)=<®>, because the function of the mutex.

All the other places of the CPN have initial marking 0, that is, they are unmarked, before
the push-pull operations are performed.

Guards:
The closer look at transitions t7 and t5 will show that they have associated a guard
[11,]. This tells that only tokens representing </1,> can move from place p2 to place

p4 or from place p5 to place p2 (because the guard for all colors X1 <j<p—1) </7;>
evaluates to false and thus prevents enabling).

Pl oA AP o Ut W7

PR BN R s (gt RGP R i JR g2




1

46 3 Formal Specification of FPS using H-L.PN
—

Specifications of a Workstation

The robot can be basically found within three possible states: free, busy before it wo

and busy after it worked. There are three major tasks to be performed that are relateq
with the robot's operation: loading and unloading the work position with a part, ang
part is processed by the robot. Once these operations are started, they cannot be
interrupted until they finish. Up the work position of the robot, there is a producer
system (type of items to be processed in it). Down the work position of the robot, therg
is a consumer system of these items. No restrictive hypothesis are made regarding the
nature of these items. Another robot or a human operator is responsible for Ioading"
and unloading the work position (see Fig. 15). -

Processed part

Unloading

Fig. 15: Schema of the Workstation to be Modeled

Modeling of the Workstation

The above named behavioral specifications lead to the OCPN model of Fig. 16, whiehf;
is a faithful reflection of the preceding considerations. ]

Below are described the basic color domains associated with the firing of transitionsf
and the marking of the places, the transitions, the places, the color functions of the net,
the guards, and the initial marking of places. ;

Basi ord e
M = {m;, i € [1:1]} identification of the robot type

P = {px, k € [1:m]} set of parts processed on the work position of the robot
{<e>} basic color domain, where <e> is the uncolored token /74/.

Uni floolor'd ‘e

Q°'=MxPx{<®>}={<m;py, <®>>}, universal color domain.

The element <m;,py, <®>> means, that there is a part <py > to be loaded on the work
position of the robot <m;>, processed in it, and/or unloaded from this position to the
exterior.

2

4
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output

sl
unload

<m;>,

U
informationMrmation-ﬂow

" < .
eiLEe information-flow M
production- production-
flow flow
— production- and information-flow i -
<Px> <m;,px, <®>> <pi>
gAY t3
input-port output-port

Fig. 16: OCPN Behavioral Model of a Machine

Transitions:

T={t1, t2, t3}

t1: models the operation "loading the work position of the robot".

t2: models the operation "robot processes a part”.

t3: models the operation "unloading the work position of the robot”.

Places:

P={p1, p2, p3}

p1: if marked models the state "robot free”

p2: if marked models "work position of the robot busy before it processes a part”
p3: if marked models "work position of the robot busy after it processed a part”
Standard color functions:

Projection function: proj(1): 2°— M [ proj(1).<mj,px, <®>>=<m;>

Identity function: id : @°—=Q" / id.<m;,px, <®>>=<mj,py, <®>>

Initi rki

p1 is initialized with value mp(p1)=<m;>

p2 and p3 are initialized with value 0, that is, they are unmarked.

A R 34 |

S e TRt

At o P s A el 12

e R R TR R



48 3 Formal Specification of FPS using H‘L‘PN 'i

The models of resources can be considered as basic modules where from an entip
model of the production system can be constructed taking the following set of sp, |
cations into account /12/:

3.2.3 H-L-PN Coordination Model of the System Layout

(i) Functional architecture

A

Production systems are typically (but not always) designed with some purpose. Ex :‘
ence with designing a class of production systems leads to understanding of the f::';\]
tions that must be provided to achieve the production purpose and rules on how thess

functions compose and interact. Because of them, the first restriction is that the coq

dination models are configured according to some known functional architectures
the modeled system. In other words, instead of trying to assemble all possible coor,
dination models that can be created from the given set of models of resources, tha
problem is restricted to only one architecture, the one designed for the production
purposes. |

(i) Functions to be performed

Even with pre-defined functional architectures, there are arbitrary ways of implementing
the individual functions from the given set of resources. This might again require 5
problem solver to generate arbitrary models and test them, if that configuration cg
indeed provide the desired functions. However, it is important to repeat here that jp
many systems is possible to identify some particular configuration of modeled
sources that are crucial to implementing some functions in the whole coordination
model.

(ii) Connectivity between resources

After identifying the port-structures of the resources and a set of structural composition
constraints derived from the structure of the system, a simple way to develop a cog :;i
dination model is with a bottom-up synthesis-and-validation method. In this case, g
modeler starts with one of the available models of resources and creates a viable coop.
dination model by composing other resources satisfying connectivity constraints g
taking into account the functions which are to be performed in the system (modeling
form resources to functions). The resources share port-structures and they exchange
information and parts to be processed in the system, e.g., pallets with processed o
assembled parts, by means of the ports. The main physical constraint for a correct
functioning of the system is the preservation of information and parts in movement, ang
this constraint has to be considered for each step during the synthesis of the coordina.
tion model. 4

At this point, in addition to an ordering of manufacturing functions, an engineer will
have established a set of resources capable of providing these functions together with
their validated OCPN models.

The layout model of the system, i.e., coordination model of resources, is then obtainod_gf
by taking into account both, competence and cooperation, relationships between ru.3
sources, constraints of the ordering of functions above cited by selecting BM

routes for the workpieces, and by composing the models of the resources in a
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tom-up manner /21/. The functional aggregation composition imposes the participation,
constraint on all the participant models /12/. For the sake of simplicity, we restrict our
work to simplified multi-component models. This means that we do not consider cer-
tain more complex cooperating behaviors as, for example, the case of two assembly
units cooperating to carry out the same assembly-operation, or such that one compo-
nent of a resource is holding a part while the other component is performing an assem-
bly operation on it.

Using the OCPN models of the resources and taking into account the port-structures
of each of them, the bottom-up synthesis of the coordination model of a system is
performed by considering that the OCPN models share transitions, corresponding to
synchronous activities. As described in section 3.2.1, the modular modeling method
presents also the possibility of composing analysis results of the individual modules,
in order to obtain results which are valid for the entire model of the system /24/.

Each transition related to port-structure describes a part of more complex actions and
all parts must occur together. Transitions from different resources modeling the same
activities (e.g., a part is transferred from one transport system to another) are fused in
a unique transition. It is very important to recall here that a transition related to a port-
structure is enabled, if it is possible to specify an occurrence-mode such that all transi-
tions of the involved port-structures are enabled at the same time. The change pro-
duced by the occurrence of the transitions modeling a port-structure for a given
occurrence-mode is the sum of changes produced in each involved OCPN model of
resources. A guard may be shared by all transitions belonging to a port-structure, and
will be bound to the same value for all of these.

To help ground the modeling methodology, a simple flexible production cell example
is presented as follows.

Specifications of a Flexible Production Cell

The system consists of two different robots, e.g., robots 1 and 2, and a human opera-
tor, and is sketched in Fig. 17. There are three kinds of parts to be processed in the
cell, e.g., part types 1, 2 and 3. The parts of type 1 from the input position must be
processed by the robot 2. The parts of types 2 and 3 from the corresponding input
position must be processed by the human operator. The robot 1 is used for loading
the work positions of the robot 2 and of the human operator from an input position, and
for unloading both resources to an output position. Each of the above presented re-
sources has capacity for handling only one part at time. Once a resource starts working
on a part, it can not be interrupted until the work is completed. The robot 1 is shared
by the human operator and also the robot 2, it can either serve the human operator
or robot 2, but not both simultaneously.

The following characteristics are embedded in this system: it is event-driven, asynchro-
nous, and sequential; it exhibits concurrency, conflict, mutual exclusion and non-deter-
minism.

Such a simple production cell can contain a system deadlock which may result improp-
erly triggering a sequence of events. Suppose that, the robot 2 is still processing a part
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1 grasps a part of type 1 from the input position and tries to load the robot 2,
system is deadlocked. This is because the work position of robot 2 is already full

it cannot be loaded. The work position of the human operator cannot be unload
either, because the robot 1 is busy by a part of type 1 and it is not available. To a aﬂ
such a catastrophic failure, one can adopt one of two approaches. The first approaq,voﬁ
is that a supervisory controller is designed with the capacity to detect and resolve
deadlock during the operation of the system /117/. It is obvious that using Suchu?

of type 1 and the human operator finished his task. While this is occurring, the robq\‘

method may be very costly.

part type 1 robot 2
part type 2 ~—y -
parttype 3 /

: c ;.: : - V ii
& 5/ pattypet oot 1 |
S & human :

: ”&, ; part type 2 » . operator |

part type 3 i

Remark: |
B work positions I input positions 73 output positions === flow of parts ‘

Fig. 17: Layout Specifications of a Sample Flexible Production Cell 1

The second approach, here proposed, is to design a model of the cell with desnrabh
properties, in this case, freedom from deadlock. In the example, the model has to be‘
designed so that the robot 1 (a shared resource) grasps a part to be loaded on the
work position of the human operator or the robot 2 if, and only if, the correspondmg
position is free.

Modeling of the Cell

In order to design a H-L-PN model of the system layout with desirable behavioral prop.
erties, there arise the concepts of logic and physical operations.

Definition 32: Logic operation is related with the information handling in the model ang
it has no meaning from the point of view of the processes developed in the modeled}‘
system. ;

Definition 33: Physical operation is related to the processes developed in the system, !
e.g., machining, assembly, grasping, etc. ?
Both kinds of operations are modeled by means of transitions of H-L-PN.

By considering the functional architecture of the whole system and the functions to ba
performed by the resources of the cell, as previously discussed, the modeling of the

system with the proposed OCPN starts with the definition of the basic and universal
color domains.
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M = {my(robot 2), my(human operator)} identification of the work position. my: robot
2; mo: human operator
R = {n: ri(robot 1)}
P = {px, k € [1:3]} set of parts to be processed on the machine
{<e®>} basic color domain, where <e> is the uncolored token /74/.
niversal color
Q'=MXRxPx{<®>}={<m;jp<®>>}, universal color domain.

The element <m,7,p,, <®>> means, that there is a part <p,> to be loaded on the
work position <m;>, processed in it, and/or unloaded from the work position to the
exterior. The loading and unloading operations are performed by the robot ry,

After having defined the basic color domains for each resource of the cell, the corre-
sponding functions, components (e.g., places and transitions) and guards of the
OCPN model have to be also defined.

Projection functions

proj(1): Q"= M | proj(1).<mj,fj,px, <®>>=<m;>;
proj(2): 2°— R | proj(2). <m,,px, <®>>=<r;>
proj(13): 2= P | proj(13). <m;,1j,px, <®>>=<m;,p>
Identity function

id: Q"= Q" [ id.<my,,py, <®>>=<m;, [Pk, <®>>;
Transitions:

T={t1, t2, 13, t4, t5, t6, t7}

t1: models the logic condition "ry grasps a part to be loaded in one of the both work
positions from the input position”. The target work position is reserved for such opera-
tion.

t2: models the physical operation "ry grasps a part from an input position and loads
it in the target work position".

t3: models the logic operation "rq achieves free status”.
t4: models the physical operation "part loaded on target work position is processed”.

t5: models the logic operation "ry grasps a part from a work position and unloads it
to the corresponding output position”. The work position maintains its "reserved condi-
tion”.

t5: models the physical operation "ry grasps a part from a work position and unloads
it to the corresponding output position”.

t6: models the logic operation "ry and the work position achieves free status”.
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Places:
P={p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}
p1: if marked shows the state "human operator, robot 2 free”.

p2: if marked means "robot 1 free".

p3: if marked means "robot 1 can grasp a part and load a work position”.
p4: if marked means "robot 1 loaded a work position”.

p5: if marked means "human operator or robot 2 can process a part”.

p6: if marked means "human operator or robot 2 finished”.

p7: if marked means "robot 1 can grasp a part and unload a work position”.
p8: if marked means "robot 1 unloaded a work position”.

p9: if marked means "parts to be grasped by the robot 1 and loaded into one work
position”. 3

p10: if marked means "processed parts”.

An adequate initial marking of the net has to be defined now.

p1 is initialized with value mp(p7)=<m;+my>

p2 is initialized with value myp(p2)=<r; >

p3, p4,...., p10 are initialized with value 0, that is, they are unmarked.
Guards:

In order to fulfill the specifications of the work-plan associated to each part, the follg
ing guards have to be associated to some transitions of the net.

G&q(t1)=G&(t5)=(my A p1),G82(t1)=G&x(t5)=(mz A p2),G&a(t1)=G&q(t5)=(ma A pg)
G(t1)=G&; v G&; vV G&s; G(t5)=G& v G&,V G&; ¥

Finally, taking into account the connectivity between resources, the OCPN model of he
cell can be generated (see Fig. 18). The transition from the functional dascnption .
behavioral specifications to the OCPN model is accomplished by identifying s
special arrangements among functions which are to be performed in the cell W
instantiating corresponding OCPN elements into the whole OCPN model under
construction /12/. This approach needs an overall synchronization of the subnets, ie
models of resources, by using, for example, a kind of rendez-vouz mechanism lzsf.

Comparison between the OCPN models of Fig. 16 and 18 allows highlighting the signik
icance of modeling, with the proposed modular approach. Topological analysis of the
structure of the OCPN in Fig. 18 shows the existence of three sub-OCPNs like this one
of Fig. 16, that is, models of the human operator and the robot 2 fused into one stru
ture, and twice the model of the robot 1, respectively.
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: 1
proj(1) (m?,‘p proj(1)

<My >,

- proj(13 proj(13)
proj(13

r A
» | [input-port of ry ] [output-port of ry input-port of ry || output-port of ry]| +
X ; input-port of m; output-port of m;| ;
: proj(2) <r proj(2) -
: PLOi@lo. proj(3). S2proj(8) proi(3),
information-V ‘\infonnation-ﬂow
<m;> O <m;> ;
production- production-

production- and information-flow
<fnj,’7, pk' <O D D < [TV, D, <> >———<m"‘f;;, Pk, <0>>

information-flow ._J L information-flow

<fl-> > <I}>

flow
g

<Py >

Fig. 18: OCPN Model of the Sample Flexible Production Cell of Fig. 17

3.3 High-Level Petri Net Properties and Specifications of the Systems

Design process of flexible production systems is quite a complex task. Thus, it is very
important to validate the significant steps of model building/transformation before go-
ing on to the implementation /102/. Validation analysis aims at verifying the correctness
of system design and at verifying all initial specifications. This kind of analysis is
achieved through description, namely, the model of the system (in this work: H-L-PN).

Faced with the growing complexity of the flexible production systems, H-L-PN represent
an interesting compromise of power and analytical capacity on the already built models
/45/. One of the major advantages of Petri nets is the ability to analyze them for proper-
ties related to the specifications of the modeled systems. Petri nets have a well-founded
mathematical theory, which allows validation of the specifications of the modeled sys-
tems by means of qualitative and quantitative analysis of the net properties before the
implementation is performed.

From the set of properties addressed in chapter 2, section 2.4.4, boundedness or safe-
ness, conservativeness, liveness, and reversibility are of high relevance for the qualita-
tive validation of system's specifications. Their significance to flexible production sys-
tems is stated as follows /117/:

e Boundedness or safeness results the absence of capacity overflows. Safeness is
the special case of 1-bounded. For instance, all resources of a given flexible pro-
duction system have finite capacity. Safeness of a model indicates the availability
of only a single modeled resource.
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e Conservativeness results that the initial number of tokens, weighted by an integer
factor, remains constant during the net's evolution. The total number of resources
remains constant, before and after the processes in the flexible production system
are performed. For instance, a pallet can not disappear during the production.

e Liveness results the absence of deadlocks. This property guarantees the successful
production of the system. Moreover, it insures that all modeled processes can oe-

Ccur.

e Reversibility results the cyclic behavior of a system. It means, the system can be
initialized after each production cycle. If the system has to be reversible from any
reachable state, considerations about modeling of error recovery strategies have to
be taked into account during the modeling stage.

3.3.1 Analysis of the H-L-PN-Based Models

Many results on Petri Net and High-Level Petri Net qualitative analysis have been elu-
cited /18/, /23/, /60/. Not much has been done to generalize these results to H-L-PN
and the validation of flexible production system specifications.

The kind of H-L-PN used in this work as modeling tool is a sub-class of colored nets
which color functions belong to a ring of commutative diagonalizable endomorphism
/23/. Mathematical properties of these color functions allow a symbolic computation of
family of flows, by means of a generalization of the Gauss elimination method applied
to the incidence matrix of the nets and its transpose.

Based on a method proposed in /23/ for calculating linear invariants deduced from the
left annihilators (flows) of a H-L-PN's incidence matrix, this work proposes an approach
for validating flexible production system's specifications, using the information con-
tained in the calculated linear invariant structures /21/.

3.3.2 Validation of Specifications of Resources

The information contained in the structures of transition- and place-flows and the corre-
sponding transition- and place-invariant relationships of a H-L-PN model allows per-
forming the validation of many logical and technological properties of the resources of
flexible production systems, without resorting to simulate the net's evolution (token-
game).

Taking into account the definitions 14 and 17 in chapter 2, the behavior of a colored

Petri net is determined by the net's structure. It can also be expressed by means of
occurrence-mode function defined below.

Remark: The definition of the occurrence-mode function, used in this work, is based
on the definitions presented in /4/.

Definition 34: The occurrence-mode function is defined for each transition of a net as
I': [R(M(p)) xG(t)] — {0,7} and it can be seen as a functional vector of Boolean func-
tions:

¢
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I'(t)=[y1(m(ti,Cp),G& (ti),y2(M(*4,Cp),G&2 (ti)),....yn (M(*tn,Cp),G&n (ti)]

whereby y;(m(*ti,c,),G&j(ti)) is the occurrence-mode function ”j” related to transition "ti”
and m(ti,cp), which are sets of colored marking of pre-condition places /17/, and
G&j(ti) are additional constraints of the enabling/firing condition of transitions presented
in definitions 14, 15 and 16 respectively /40/. The function y; evaluates to 7 when the
transition ti can be fired with respect to the occurrence-color “” in the next iteration,

otherwise it is 0. It can be efficiently implemented by using the topological information
from the colored Petri net.

To help ground the discussion of the referenced formal methodology, the validation of
specifications of the LIFO storage, modeled in section 3.2.2, is performed below.

Structural Analysis of the OCPN Model of the Dynamic LIFO Storage

The set of place- and transition-flows (pf, tf) of the OCPN of Fig. 14 obtained from its
incidence matrix, determines the following place-invariant (P/) and transition-invariant
(TI) relationships:

e Pli:
proj(1).m(p1)—(succ(14) —id).m(p3)=proj(1).mo(p1) — (succ(1) —id).mo (p3) = <I11 >

® PI2: proj(1).m(p2)+id.[m(p3)+m(p4) +m(p5)]=
=proj(1).mg(p2) +id.[mo(p3) +my (p4) +mp(PS)] = <I11>+<IT2>+......+ <1 >=
=% <j<p <I1;>

® PI3: proj(1).R<l1;>.m(p1)=<l1;>+</13>+...+ <Ij>+...+</Th >=Z; <j <, <IT;>

® Pl4: id.[m(p4)+m(p5)]+abs.m(p6)=id.[mg(p4)+mo(p5)] +abs.my(p6)=<e>

o tf1: [</1y,pr,<®>> id R<Il;> id <l1,px<®>> R<I;>]T

o TI1: I(p,(t,c)).tf1=I(p, (t,cp).[ <ITp,Px, <®>> idR<IT;>id<I1p,p, <®>> R<I1;>]T=0
o Ti2: I(p,(t,cp).ti2=I(p,(t,c)).[0 O R<I/l;> 0 0 0]"=0

o TI3: I(p,(t,cy).tf3=I(p,(t.c)).[0 0 0 0 O R<l1;>]=0

Validation of the Specifications of the LIFO Storage by Means of the Analysis of
Invariant Relationships

Axiom 4: Actions in the LIFO system are associated to firing-modes of transitions of the
OCPN model.

Axiom 5: Action in the LIFO system can be performed only if the corresponding occur-
rence-mode function has the value true, i.e., 1, and the enabled firing-mode is fired.

Proposition 1: Place p7 has capacity for a single color marking, the cardinality of its
marking is one, which initial value corresponds to the storage position to be loaded at
the end of the first push operation.

Proof: If the initial marking of p1 is mp(p1)=<I/1;>, and is from PI3, if this is multiplied
by <I1;>, then Y</1;,px, <®>> € Q"

proj(1).R<it;>.m(p1).<ll;>=(<l1y >+ <lp>+..+<I1j>+...+ <1, >).</1;>=1

From this equality it is possible to conclude that 3 </7;> / m(p1)=<I1;> and
card[m(p1)] = #[m(p1)] = 1, which proves the proposition true.O
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Lemma 1: At any time, the marking of place p1 is the color </7;>, which corresponds
to the storage position, to be loaded, immediately following the sequence of push op-
erations.

Proof: Immediate from the structure of place-invariant relationships P/7 and PI3.0
Proposition 2: Each position of the LIFO storage has capacity for storing a single [tem '

Proof: From PJ2, if this is multiplied by </7;>, then Y</1;,p,, <e>> € 2°
{proj(1).m(p2) +id.[m(p3)+m(p4) +m(p5)]}. <I1;>=
={proj(1).mp(p2) +id.[mg (p3) +mp(p4) +my (p5)]}. <I1;>=

=(<1>+ <> +...+<l1,>).<I1;> =24 <j <n <I1;>).<11;>=1

From this equality can be concluded that

proj(1).m(p2).<11;> =< 1 which proves the proposition true.0

Proposition 3: The LIFO storage has n positions and the maximum number of items
to be stored simultaneously in this system is n (LIFO storage capacity).

Proof: From P/2, if this is multiplied by X5 <; <, </7;>, then ¥ </1;,px,<®>> € Q°
{proj(1).m(p2) +id.[m(p3) +m(p4) +m(p5)]}.Z1 <j <p <I1;>=

={proj(1).mo(p2) +id.[mg (p3) +mg(p4) +mp (p5)]}.Z1 <j <n <I1j>=

=<y >+ <>+, + <1,>).(Z1 <j <n </1i>)=(Z1 <i <n <I1;>).(Z1 <i <n <I1;>)=n
From above equality can be concluded that

proj(1).m(p2).%; <; <n<I1;> < n which proves the proposition true.C)

Proposition 4: At any time, all the positions of the LIFO storage can be found at one
of the following states: free or busy. :

Proof: If PI2 is multiplied by </17;,p¢, <®>>, then V</7,p, <®>> € 2"
{proj(1).m(p2) +id.[m(p3) +m(p4) +m(p5)]}. <! px, <®>>=
=1{proj(1).mo(p2) +id.[my(p3) +my(p4) +my (5)]}. <I1;,py, <®>>=
=<y >+ <>+ 4+ <1, >). <> =(Zy <j <p <I1;>). <l1;>=1

According to this, main conclusion may be derived

proj(1).m(p2). <I1;,py, < ®>> +id.m(p3). <11;,py, <®> > +id.m(p4). <!1;,px, <®>>+

+id.m(p5). <1, p,<®>>=1

and it follows, that the places p2, p3, p4 and p5 are in mutual exclusion in regard to

the color </7;,p,,<e>>. k|

Since the places p2 and p3 model busy and free storage positions respectively, the

mutual exclusion condition between them proves partially the proposition true. The

places p4 and p5 model transitory busy storage positions during the push and pull J

operation respectively, so both markings are in mutual exclusion in regard to the same %;
},

color </1;,px,<®>>, which proves completely the proposition true.C)

Proposition 5: The operations push and pull are in mutual exclusion.
Proof: From P/4, if this is multiplied by <e>, then Y</1,p,, <e>> ¢ Q°
{[abs.m(p4)+abs.m(p5)]+m(p6)}.<e>=<e> <e>=1

From above equality can be concluded that
[abs.m(p4)+abs.m(p5)]. <e> < 1 which proves the proposition true.C)

Proposition 6: In the proposed LIFO storage model are the items sequentially storad.

&
&

j
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Proof: It will be considered that two states of the storage module are feasible, that is:

1) It is supposed that only one item is stored in the storage, and it is occupying the
position </1;>, then V</1;,px, <®>> € Q"

m(p3).<I1;,px, <e>>=1

Taken into account the place-invariant relationship P/1, and the initial marking
mp(p1)=<I1;>, then

(—id+succ(11)).m(p3)=—<I1;,p, <®>>+<I1jj+1),Px, <®>> and
m(p1)=<I1j.q)>—<l1j>+<I11>.

From last equalities and according to proposition 1, the place p1 has cardinality one,
main conclusions are </1;>=<[1;> and m(p1).<l12>=1 which proves the proposi-
tion true.O

2) A push- or pull-operation is in advance. There are k=0 items stored in the LIFO
storage following the position </7;>, that is, the initial marking of p1 was
mO(p1)=<lI1;41)>. There is another item stored in the position <I1,> of the storage,
then V </1;,py, <®>> € Q"

M(P3).(<!j41) Pk, <®>>+<I1j1.2) Phcs <®>>+... + <T(jf) Di  <®>>+<I1,p4,<®>)=
=k+1

a) If a push operation is in advance, from place-invariant relationship P/4
m(p4).<e>=1; m(p5)=0; m(p6)=0

b) If a pull operation is in advance, from place-invariant relationship P/4
m(p5).<e>=1; m(p4)=0; m(p6)=0

Then V<1 pc,<e>> € Q°

(—id+succ(14)).m(p3)=—<I1j+1) P, <®>>+<IT(j1k+1) Pry<®>>+<I1r41) P, <®>>
— </, px, <®>> ;
Taken into account the place-invariant relationship PI1, we obtain V</1,,p, <®>> € £
m(pU =<”(j+ 1) == <I1(j+1) >+ <”(j+k+1) >+ <I1(,-+1) >—</1r>

From here and the proposition 1 can be concluded that e
<Mj4k+1)>=<I1,> and m(p1)=<Mr+1)> which proves the proposition true.O

Corollary: If there are k=0 items stored in the LIFO following the position </7;>, then
m(p3)=<I1j41),Pk,<®>>+<I1(j12) Pk, <®>>*... T <I1j+k) Pi:<®>=> :
Taken into account the place-invariant relationship PI1, then V</jpx,<®>> € 2
m(p1).<l1(j+k+1)>=1 i T

and the first position of the storage, to be unloaded, will be the position </7,x47)>.
Proposition 7: At any time, there is at least one task to be done within the LIFO storage,
before it becomes deadlockiree. From the point of view of the model, for any reachable
marking of the OCPN model, there is at least one enabled transition in regard to one
color from the universal color domain of the net. There is at least one occurrence-mode
function with the value true, i.e., 1.

Proof: Each of three feasible states of the storage and all the feasible reachable mark-

ing (states) of the OCPN will be considered. And are:
1) Initial state

The LIFO storage is empty, the initial marking of place p1 is my(p1)=<I1,>, that is, the
storage loading process begins onto this specific position.
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From proposition 1, the place-invariant relationships PI1, PI2 and pl4, then 1
V<ll,p,<®>> € 2" a
m(p1).<I1,>=<I1,>.<I1,>=1; m(p3)=0; m(p4)=m(p5)=0; m(p6)=<e>: |
m(p2).Z; <j <n<I1j>=n y
Taken into account these results and the guard of the transitions, it is concluded ﬁ‘d

i

only transition t1 is enabled to fire in regards to the color </1, p, <e>>. 5

From the definition 34 only one occurrence-mode function of t1 is true, i.e., 1. thatsg
Ya(t1)=proj(1).m(p2)*abs.m(p6)*[12,]=1; Vj € [I:(n-1)] =  y(1])=0, }
Conclusion: The operation "loading a part into the input-port of the LIFO system” ﬂ"
unique performed action in the system.O :

2) Steady state

|
The LIFO system has x (x=0) busy positions following the position <Itj>. J
From the place-invariant relationships PI1, PI2, Pl4, the transition-invariant T/ and
V<ltpp,<®>> e Q° ’

proj(1).m(p1). <Mgixs1)>=1; |
id.m(p3).[<(j+1),Pk, <®>>+<ITj12),p5, <®>>+...+ <”(i+x)»Pk- <e>>]=x,
proj(1).m(p2).[<jix41)>+</jixs2) > +... + <l1y>]=[n-(j+x)): |
{id.[m(p4)+m(p5)]+ abs.m(p6)}.<e>=1; ’
Taking into account these results, transition t4 is enabled to fire in regard of all ‘-"olds

%

;

[<l1(i+1),pk,<o>>+<I1(j+2),pk,<o>>+...+<I1(j+x),pk,<o>>] en’ 4
and transition transition t7 is enabled to fire in regard of al| colors
[<11(j+x+,),pk,<->>+<I10+,+2),pk,<o>>+...+<I1,,,pk,<o>>] e’

From the definition 34 it is possible to conclude that:

® only one occurrence-mode function of t7 is true, that is
¥n(t1)=proj(1).m(p2)*abs.m(p6)*[12,]=1; Vi € [1:(n-1)] = w(t1)=0 e
The operation "loading a part into the input-port of the LIFQ system” is oné of ™
possible actions to be performed in the system.0 }

® only one occurrence-mode function of t4 is true, that ig 0
+x(t4)=proj(1).m(p1) *abs.m(p6)*id.m(p3)=1; Vi € [j4+1j4(x—1)] = n =%

® both occurrence-mode functions, y,(t1) and Yj+x(14), correspond to mutual aﬁa
sion operations. Then, it is necessary to decide which operation will be perfo™™
in the next iteration, i.e., a conflict has to be solved /3g;

3) Transitory state

:

4

a) Push operation in advance
The LIFO system has x (x=0) busy positions following the position </1,>.

From the place-invariant relationships PI1, PI2, Pl4, the transition.-invariant T/1
Y<i,p,<e>> € Q°

proj(1).m(p1). <Mjaxs 1) >=1;

proj(1).m(p2).[ < jyxs1)>+ <My >+... 4 <1y, >]={n-(j+.”; j
id.m(p3).[ <4 1).Pk, <®> >+ <142, Py, <®> > 4.+ Ny Ox, < 0> > ] =X :
{id.[m(p4)+m(p5)] +abs.m(p6)}. <e>=1; abs.m(p6)=0; id.m(ps)=.
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lace-invariant relationship P/2, it is concluded
p4 must belong to the sub-set of unloaded
<I1;>)),pr <®>>}

From the above considerations and the p
that the first element of the marking of
Positions of the system 21={((Z1 =i Sf<”i>)U(Z[(i+x+1) e

According to this, we have two feasible conclusions V</1g,p, <®>>> € 21

al) ¥ ¢ > (j+x+1) then, proj(1).m(p2).-<ec-1)> > 1 and taking into account the defini-
tion 34, then

Yo (t3)=id.m(p4) *proj(1).pred1,, m(P2) =1
transition ¢3 is enabled to fire in regard 0
Operations "transfer of parts from one position t

22) If ¢ = (j4x+1) then, proj(1)-m(p2)- </1c-1)>=0 &"
tion 34, then

Yi+x+1)(t2) =proj(1).m(p1)*id.m(p4) =1
transition 2 is enabled to fire in regard of the color </1(j+x+1):Pks <®>> and the opera-

tion "loading position </1j+x+1)>" is performed.0

f the color <!T¢,Px, <®>=> and a sequence of
o the predecessor one” is performed.0

d taking into account the defini-

b) Pull operation in advance
The LIFO system has x (x=0) busy positions f

From the place-invariant relationships P/7, PI2, P
V<lt,py, <0>> € Q°

ollowing the position <I1;>.

/4, the transition-invariant T/7 and

Proj(1).m(p1). </Msx+1)>=1;
PIoj(1).m(p2).[<Ij4x+1) >+ <ITj+x+2) ~
'q.m(P3)-[<11(j+1),pk,<i>>+<110'+2),pk. /
{id.[m(p4) +m(p5)]+abs_m(p5)}_<o>=1; abs.m(p6)=0; rd.m(p4) =Q. '

From the above considerations and place-invariant relationship P/3 it is concluded that

the marking of p5 must belong to the subset of unloaded storage positions
R1={(x, <j<I2;>) U (ZyG+x+1) =i <n] <12;>)),Px: <®> >}-

From this, we have two feasible conclusions Y </1y,Pks

b1) V u < n then, proj(1).m(p2)-<Tw+1)> > 1 and taking int

Yu(t6)=id.m(p5) *proj(1).succ(11)-m(P2) =1
(p8)*proj(1).suce(11) r </1,,px, <®>> and a sequence of

transition ¢6 is enabled to fire in regard of the colo _ an
ition to the following one" IS performed.O

+...+<I1n>]=[n—-(j+x)];
<0>>+..+</1j1x:P:<®=> =>]=x

<e>> € 1.

o account the definition 34

b2) If u = n and taking into account the definition 34

Yu(t5) =y, (t5) =id.m(, -
=id.m(p5).[11]=1, :
transition t5 is enabled tonﬁre in regard of the color <I1,,px, <®>> and the operation
Unloading LIFO system from output-port” is performed.O
sitions of the LIFO are loaded, then the

cﬂQll_am_l If we suppose that the first "X PO :
initial marking of the net corresponding to this state is:

Mo=[<MGy> (1 <ipn-tern) <Ii>) Ersisx<Ii>) 0 0 <e>]T “
Itis concluded that a part can be loaded in the module and transported to position

<l( 5> (push-operation) or the part loaded in the position </7x> can be unloaded

(Pull-operation).
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Corollary 2: If there is no part stored in the module, and considering that the posﬂion
<I1;> of the module has to be loaded and then unloaded in a push-pull form: %
following sequence of operations must be performed: |

® push-operation: loading part <px> into the input-port of the LIFO (</1,>) — "3':
porting part <p,> to position </1,> — loading part <p,> into goal pos"™
(<I11 >)

e pull-operation: unloading part <p> from position </1;> — transporting part ‘p"
to position </7,> — unloading part <px> from output-port of the LIFO (<”"

nﬂ
Both sequences of operations can be converted into an equivalent sequence of "fir
of occurrence-modes of transitions (t,¢;)" in the OCPN model: "

e push-operation: (t1,</1,,px, <®>>), (t3,R<I1;>), (t2,<l1;,px,<®>>)
e pull-operation: (t4,</1;,pc,<®>>), (t6,R<I1;>), (15,<I1,,pPx,<®>>)

According to definition 34, the evolution of the OCPN model, which corresponds to

last sequences, can be represented by means of the following set of occurrencé-
functions:

® push-pull operation: y,(t1), %(t3) vjejz:njs ¥1(t2), v1(t4), ¥%(t6) \jef1-pn—1)» (D)

Axiom 6:For the sake of simplicity, we restrict our work to simplified resource M

This means that we do not consider certain more complex structures as, for exa
the case of two manipulators as parts of one resource. The Ordered Color petri
based models of a resource generated in this work are then "persistent or detefm' ‘
tic” Petri net models (e.g., a Petri net structure without conflicts) /74/. ‘

Remark: According to last consideration, the OCPN models of resources are chﬂfad;
ized by the existence of one, and only one, transition-flow. Each OCPN model ©
source is then a mono transition-flow net /9/.

Proposition 8: Transitions t7 and t5 have attached only the occurrence’clm,
</1,,px, <®>>. They model the beginning of the push-operation and the end ©
pull-operation.

Proof: Immediate from structure of transition-invariant 7/7 and the guard aﬂached |
each of them.O

Proposition 9: Transitions t3 and t6 have attached a single occurrence-color ffomn?:/
universal color domain of the net. At a time, only one color is enabled to firé-
model the "transfer” operation between every two consecutive storage positions

the push- and pull-operations, which are performed in mutual exclusion.

) i) D
Proof: Immediate from structure of transition-invariant /2 and T/3 and propositio”

Proposition 10: Transitions t2 and t4 have attached a set of occurrence-colors: pud"
coincides with the universal color domain of the net. t2 models the ending ©f
operation / loading of a specific dynamic queue position, and 4 models the beg"

of a pull-operation / unloading of a specific dynamic storage position.

Proof: Immediate from structure of transition-invariant T/1.0)

4

;

-
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loadi ition 11: The movement of a part <px> in the LIFO module (loading and un-
ing of the part) imposes a sequence of push-pull operations. This is possible only

if :
prthe _OCPN model has repetitive or cyclic behavior.
[0of: By considering the results presented in proposition 1 and its corollaries,

L<Iji-~°kr<°>> e ©° and an initial marking

th‘;_sk”cfﬂ) > (21si s,'n—(x+1)]<”i>) (= <i=x<I1i>) 0 0 §°>]T

e squence of push-pull operations corresponds to an evolution of the OCPN, which

e expressed by means of the following set of occurrence-mode functions

y"h(;”l' W(3) vyeqps2)nys Yocs 1) (2 Voer 1) (E): i(t6) efx+1):(n=1)]> 0 (t5)

e ast sequence can be converted into an equivalent o.ccurrence/flflng sequence of

A OC.PN model which firing count vector © matches with the transition-flow tf7.
ccording to definition 17, equation .11 (see chapter 2)

g’_'(P)=MO(p)+LQ
ince 1.6 coincides with T/, it is concluded that M'(p)=Mo(p). The part was loaded and

then unloaded from the LIFO module, which proves the proposition true.cl

Conclusions
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3.3.3 validation of System Layout specifications

Even if the different modules, €.g., [esources, of the system aré correctly modeled and

Validated during the first phases of the design, it is necessary to perform the analysis
f the complete model of the system, since the

i?';:r the validation of specifications 0 A . :
actions between the different modules can give rise to the main properties of the
Whole system /32/. The last addressed properties are those that exist as a result of the
interaction of different modules, and that cannot easily be determined from the inde-
Pendent validation of the component modules.
Since the construction of the OCPN model of the whole system is preceded by the
Specification of a set of scenarios, which the intended system should obey to, the re-
Sults of the actual analysis phase must help the designer to validate all these specifica-
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OCPN models of resources, and the task is to verify that the OCPN model of the
system actually matches the production and material-flow purposes.

The main result of the modeling approach described in section 3.2.3 is the possibility
of composing analysis results of the individual modeled resources, in order to ob »:
results which are valid for the entire OCPN model. Using the information from this
analysis, it is straightforward to validate the specifications of the whole system, suct

as:

® boundedness, conservativeness, deadlockfreeness, reversibility, etc.;
® reachability of some special state;

e mutual exclusion among states of resources;

® capacity of storage zones;

® sequence of modeled operations;

For this purpose, a constructive proof of how place- and transition-flows of the mode {
resources can be combined to place- and transition-flows of the OCPN model of the {
whole system is presented as follows. .

Main goal is to construct place- and transition-invariant relationships of the OCPN E’
the system from the place- and transition-invariant relationships of the models of t e

individual resources and then to validate the behavioral specifications of the whole
tem.

The flexible production cell of Fig. 17 serves as an example. It has 3 resources, & ; =
three kinds of information are basically considered for describing their static and dys
namic specifications, they are the basic color domains of the OCPN model of Fig. 1

Fig. 19 shows the individual OCPN models of the resources of the exemplary FPC & u j
the corresponding place-flows and place-invariant relationships. For a better under ’
standing of the meaning of each invariant relationship, Fig. 20 depicts the same ]
in a graphic form. .-« ;

For instance, Fig. 19(a) and 20(a) show the meaning of the place-flows in relation with
the specifications of the robot 1 (<ry>) when considering it embedded in the layout 1
of the whole flexible production cell. Similar results can be issued by analyzing the
models of the other resources. 4

An overview of these graphical descriptions allows proofing that the set of place-fig
(i.e., place-invariant relationships) of the models of resources can be combined f
cover the total system.

We are prepared now to apply the same formal methodology used in section 11.51.2.‘~ |

Conclusions

All places of the OCPN models take part at least in one place-invariant relationship.
means that each place has a bound, which means the OCPN models are bounded
the model of the whole system too.
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PI1:proj(1).m(p1) +id. [m(p3) +m(p4)+m(p7) +m(p8)]+proj(13).[m(p5) +m(p6)]=<m1>
PI2:proj(1).m(p1)+id.[m(p3) +m(p4) +m(p7) +m(p8)] +proj(13).[m(pS) + m(p6)] = <m2>

(c) Robot 2 and human operator

proj(13)
roj(13) tsid

proj(13)
roj(13)

13 pS ta P6

pf: [p3 p4 p5 p6 p7 p8 p9 p10 ]
PI1:proj(3). [m(p9)+m(p10)]-+id.[m(p3) +m(p4)+m(p7) +m(p8)] +proj(13).Im(pS)-+m(p€)] =0

(d) Parts to be processed

Fig. 19: Structural Analysis of the OCPN Models of Resources of the FPC in Fig. 18

By analyzing all the place-invariant relationships obtained, it is possible to ensure that
the OCPN models cannot have deadlocks when they work together.

S S
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The combination of both, concepts of the mutual exclusion theory and the above ad-
dressed results, also allows the proof of the reachability of the states of the system

specified in section 3.2.3 /21/ (see Fig. 21).
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Fig. 20: Validation of Specifications for the FPC's Layout proposed in Fig. 17

The main goal is then to show "what is where to be done” in the production environ-
ment using the structural information of the OCPN model.

If the H-L-PN was developed correctly, all possible states as specified above are de-
scribed formally by means of the place-flows (i.e., place-invariant relationships). This

A




3 Formal Specification of FPS using H-L-PN 65

means that forbidden states and operations are not accepted by the mathematical de-
scription and, of course, NOT ACCEPTED during the operation of the real system.

3.3.4 Validation of Material-Flow Specifications

Although the OCPN describing the structure - layout - of the production system is
generated independently from the material-flow specifications (e.g., production routes),
the modeling methodology addressed in the last section shows that there is a connec-
tion between the model and these specifications in reality. This is because each of the
processing steps of the production routes has to be carried out on a component which
exists in the production system and was modeled previously. Therefore, a production
route — flow of parts — can be thought of as a path through the manufacturing system,
and each path exists on the modeling level. Every processing step (i.e., machining
process, movement of a pallet, etc.) from the production route specifications corre-
sponds to a transition or sequence of transitions, to be fired from the OCPN model,
which means, the production route action is executed by the corresponding modeled
resource.

The proposal behind the formal specification of material-flow in a flexible production
system, using the information provided by the OCPN models, is that each flow of parts
can be mapped to one, and only one, sequence of firing of transitions (i.e., occurrence-
modes) in the net.

Remark: This task can be performed by using two possible methodologies:

(a) a formal validation by means of the structural analysis of transition-flows of the
OCPN and interpretation of them with regard to the material-flow specifications, and/or

(b) the simulation of the token-game of the Ordered Colored Petri net-based model
enhanced with timing parameters (i.e., reachability-coverability graph analysis).

Formal Validation

Let us assume that the results of the validation of the OCPN models of the resources
were correct, and the results of the structural analysis of the OCPN model of the whole
system show that it is bounded, conservative and live.

Each model of resource posses at least one transition-flow and, applying the same
proof of proposition 11, it is possible to demonstrate that the behavior of each resource
and of the whole system is reversible for the given initial marking. This property will be
used now to formally validate material-flow specifications of the modeled system.

In order to attain a better formal description of the material-flow specifications, there
arises the concept of transition-supports (t-supports/ts) of the OCPN model (see chap-
ter 2, definition 31).

The point here is that the evolution of the OCPN for a given sequence of firing of
transitions can be formally expressed taking into consideration the structure of the cor-
responding transition-support. The use of the information provided by each transition-
support combined with the structural information of the firing-modes of the transitions,
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i.e., guards associated to some of them, provides an opportunity to exploit both to
produce a set of transition-flows.

proj(1).m(p7)=<mq>
proj(2).m(p7)=<ry>
proj(3).m(p7)=<p;>

< proj(3).m(p9)=<py>+<pz>+<p>>
D%

e

-

09 S \

.-.-.O.._--J
<ma,p3~>

(<p1>+<p2>+<p3>) <my,fy,P1.<®>>

Fig. 21: Validation of States of Resources using Structural Analysis of the Model

The material-flow specifications of the flexible production cell described in section 3.3.2
serves as an example in order to make the idea behind the validation of material-flow
specifications using the information provided by the transition-supports more clearly,
Fig. 22 shows same production-paths of the cell and their mathematical description by
means of transition-supports and transition-flows of the OCPN model.

Proposition 12: The movement of a part <py> in the modeled production environment
for a given production-path corresponds to an equivalent occurrence/firing sequence
of the OCPN model, which firing counter vector @ matches with one of the transition-
flows of the net. Then, for each production-path/material-flow, which is to be formally
specified in the production environment, a transition-flow has to be found in the OCPN
coordination model. With this transition-flow can be validated a repetitive or cyclic be-
havior of the net for the proposed production-path.

Proof: Let us consider the production-path depicted in Fig. 22(c) as the material-flow
specification which is to be validated.

At this point, taking into account the definition 30, section 2.5.4, chapter 2, the transi-
tion-flow can be converted into an equivalent firing count vector @, then

Y o'e QF, m'={<m,,q,pk,<o> >} an the initial marking proposed in Fig. 18
M'(p)=Mo(p) +1.©

Since 1.@ is a transition-invariant, it is concluded that M'(p)=My(p).

As main conclusion, the evolution of the net according to a firing sequence matching
with the transition-flow, validates the movement of a part according to the specified
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production-path in the manufacturing environment and a cyclic / repetitive behavior of
the model, which proves the proposition true.0

The transfer of parts between two consecutive resources in the manufacturing environ-
ment occurs as one indivisible operation in which the preservation of specifications of
both involved resources is a main goal. According to the modeling method presented
in this work, this operation is modeled by means of only one transition.

Taking into account the results above presented, this transition takes a part of the tran-
sition-support structures, corresponding to the OCPN models of the involved re-
sources. Therefore, the enabling-condition and the firing of this transition occurs as one
indivisible action sharing the values assigned by the occurrence-colors of the involved
OCPN models.

Proposition 13: The material-flow in a manufacturing environment can be seen as the
result of production-path’s composition of involved individual components. The struc-
ture of a transition-support and related transition-flow, which formally specifies this ma-
terial-flow, is composed of the transition-supports of the individual OCPN models.

Proof: By considering the same example, the production-path specified in Fig. 22(c) is
composed of the following basic paths:

Basic paths: Robot 1 transfers one part 3 from the input position to the human operator.
Basic path,: Human operator processes the part.

Basic paths: Robot 1 transfers the processed part from the human operator to the
output position.

Each of the above addressed basic paths can be formally expressed by the following
basic transition-supports of the OCPN models of the involved components:

Basic pathy _. Basic T-Support;: t1,12,t3 _~ evolution of the OCPN model of Robot 1
(loading a part)

Basic path, _., Basic T-Supports: 15,t6,t7 _ evolution of the OCPN model of Robot 1
(unloading a part)

basic paths _. basic T-Supports: t1,12,13,t4,t5,t6,t7 _.. evolution of the OCPN model of
Human operator

Analysis of the composition of the transition-support in Fig. 22(c) allows to find the
above addressed basic transition-supports, which proves the proposition true.O

Proposition 14: If a transition models "transfer of parts and information between re-
sources” (an input- /output-port), the sum of colored tokens consumed by the firing of
the transition is equal to the sum of colored tokens produced by this firing (parts- and
information-flow preservation). The sum of the colored markings before and after the
firing of the transition is constant.

Proof: According to the definitions of place-invariant relationships presented in section
2.5.4 and taking into account the results of proposition 13 it is possible to ensure that:

i) Flow of parts between two connected resources is modeled by the firing of transition
which belongs to two basic transition-supports, each one modeling the behavior of
each involved resource. Firing of this transition produces the movement of a colored
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marking between places modeling states of resources. These places take part of a :
place-invariant relationship of the OCPN model.

i) Flow of information between two connected resources is modeled by firing of the
same transition, but now its firing produces the transfer of another colored marking
between places which model states of the involved resources. These places take now
part of two others place-invariant relationships of the same OCPN model.0

As an example, let us consider the transition t3 which models transfer of parts from
Robot 1 to Robot 2 or human operator (see Fig. 22(d)). This operation involves the
output-port of Robot 1 and input-port of Robot 2 or human operator. The structural
analysis of the OCPN models of both resources shows that this transition takes par
of two transition-supports (basic T-Support; and basic T-Supports) addressed in propo-
sition 13. Firing of t3 consumes the marking color »" from p4 (flow of part and informa-
tion), produces the marking <ry> of p2 (flow of information) and produces the marking
<mp,p3> from p5 (flow of parts).

Firing of t3 belonging to the T-Support addressed in Fig. 22(c) produces the movement
of the marking w” (e.g., id.m(p4)) from place p4, of the marking <r{> to place p2 (e.g.,
proj(2).m(p4)), and of the marking <m,,p3> to p5 (e.qg., proj(1,3).m(p4)).

® The markings of places p4 and p5 are in mutual exclusion regarding the marking
<mg,p3>. Flow of parts: a part can be found in resource "robot 1" or in resource
"human operator”.

-

® The markings of places p4 and p2 are in mutual exclusion regarding the marking
<ry>. Flow of information: robot 1 can be found busy by a part of type 3 or free.

It is important to observe that the change of the type of tokens (colors) on the places
caused by the occurrence of the transition t3 does not depend only on the current
marking. Instead, it is completely determined by the structure of the net. Therefore, in
order to keep track of the distribution of tokens while the transition fires, it suffices to
consider the relative changes for every place connected to the transition.C

Conclusions

The formal validation methodology proposed in this section can be used to compute
all the production-paths for a given arrangement of resources of a flexible production
system. With the presented formal specification, the designer of flexible production
systems is able to calculate, validate and specify, in advance

e the total number of travel routes of pallets and exchange of parts and information
between resources of the system on the basis of the structural properties of the
OCPN models (e.g., each production-path can be represented by only one transi-
tion-support and related place-invariant relationships;

e the behavior of each resource is represented by one basic transition-support and
related place-invariant relationship).

A
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Fig. 22: Validation of Material-Flow Specification using Structural Analysis of H-L-PN

Nevertheless, the main difficulty, which is to be solved for a better understanding of the
evolution of the modeled system, is that transition-supports, derived transition-flows,
and place-invariant relationships of the OCPN model do not provide full information
about the causal relationship between transition occurrences, (i.e., causal relationship
between actions and states in the system). Therefore, after the formal validation has
been done it is valuable to perform the simulation of the token-game of the net. In this
case, each step of a production-path can be validated in the OCPN model taking into
account the causality relationship among them.
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Simulation

Let us assume that the results of the formal qualitative analysis of the OCPN model of
a flexible production system show that it is bounded, conservative and live. :

The addition of timing to the basic H-L-PN model enables a new kind of analysis — ¢
validation methodology. This is based on the enumerative analysis related to the reach.
ability-coverability graph of the original H-L-PN model of the layout of the system, en-
hanced with time related specifications of the flexible production system associated
with some transitions of the underlying H-L-PN. As a consequence, the herewith pro-

posed analysis proceeds by searching the space of possible solutions for the tempo-
rized H-L-PN models by taking into account the following consequences /44/: ]

® The set of firing sequences of the temporized H-L-PN is a sub-set of the firing se-
quences of its non-temporized H-L-PN, since the timing information might inhibit
certain combinations of firings of transitions. :

® The state of a temporized H-L-PN is no longer sufficiently expressed by marking of
its non-temporized H-L-PN. Depending upon the particular temporal model, the
state must include information about the transitions already fired, or information
about the firing delays of enabled transitions.

® The reachability graph of the temporized H-L-PN as defined by those markings
reachable by legal firing sequences, is a subset of the reachability graph of its
non-temporized H-L-PN. The timing information can alter the relative order of the
transition’s firing, although the logical organization of the firings does not change.

® Since the addition of timing makes no changes to the logical structure of the H-
L-PN, the place- and transition-flows of the temporized net model are exactly the
Same as for its non-temporized H-L-PN.

The introduction of temporal specifications in the basic, untemporized H-L-PN model
of a system according to the algorithm described in section 2.5.3, allows refinement of
the coverability graph of the net. If it is implemented for helping the token-game evolu-
tion of the H-L-PN, a comparative bar chart or Gantt diagram can be obtained from the
simulation of the dynamical behavior of the net and it shall render a quantitative analy-
sis /9/, /69/, /70/. That is, performance indexes referred to the dynamical behavior of
the modeled system and their functioning specifications can be obtained /17/, /22}.
Detailed discussion about this kind of analysis is beyond the scope of this work. The
referenced bibliography can be consulted for more information.

For the purposes of this section, i.e., the validation of material-flow specifications, the
Gantt diagram obtained from the temporized evolution of the H-L-PN model of a flexible
production system is a very good source of information. However, this validation
method can be applied only if the following points are also considered during the meo-
deling phase:

e Some sort of additional information must be available beforehand on the elemen-
tary operations which are being modelled, for instance, the main operative charac-
teristics of the resources of the system. From this previous knowledge there arise
the initial values for temporizing the original developed underlying H-L-PN.
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Since transitions model actions in a system and action consumes a corresponding
time, this stage makes use of time delay characteristics associated with the net
transitions.

As stated in section 3.2.3, two kinds of operations were considered to be modeled
during the evolution of a flexible production system: logic and physical operations.
Of course, only physical operations will be considered as source of material-flow
specifications.

Estimation of the duration of all elementary physical operations developed by each
resource of the modelled system has to be made. From this analysis, a delay will
be associated to the corresponding transitions, i.e., occurrence-modes, of the H-
L-PN model as described in chapter 2.

After having temporized all the transitions, i.e., occurrence-modes that model physi-
cal operations in the production environment, the simulation of the temporized to-
ken-game of the H-L-PN is performed using a properly designed CAD system, e.g.,
simulator.

The application of the above described concepts allows gaining confidence on the
system description, as well as detecting certain characteristics that have to be taken
into account when developing the DECS of the production system. Some of these are:

The evolution of the production environment presents conflict situations that have
to be solved in order to generate an optimal material-flow. These conflicts can be
detected and observed easily at the H-L-PN model of the layout of the system, but
the solution has to be found at other levels of the hierarchical DECS structure (see
chapter 5).

The material-flow specifications depicted in the Gantt diagram can be used for the
derivation by means of statistics, of a set of performance metrics related with the
optimal development of work-plans (see chapter 5).

In order to show the applicability of this simulation-based validation methodology, Fig.
23 depicts two possible evolutions of the production cell described in section 3.2.3.

The following specifications about the temporized evolution of the cell were considered
and modeled by means of temporized transitions:

Robot 1 loads work position of the robot 2: 3 [time units]

Robot 1 loads work position of the human operator: 2 [time units]
Robot 1 unloads work position of the robot 2: 3 [time units]

Robot 1 unloads work position of the human operator: 2 [time units]
Robot 2 processes a part type 1: 7,5 [time units]

Human operator processes a part type 2: 5 [time units]

Human operator processes a part type 3: 4 [time units]
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Fig. 23: Validation of Material-Flow Specifications using Simulation of H-L-PN Models

For better understanding of the example, the H-L-PN of Fig. 18 is represented by
means of equivalent Temporized Petri Net (TPN) as defined in chapter 2. Each occur-
rence-mode of transition of the H-L-PN that models a physical operation in the produe-
tion environment is represented by means of temporized transition of the TPN. The
occurrence-modes of transitions that model logic operations are represented by means
of immediate transitions of the TPN. Motived by these modeling's restrictions, and with-
out considering any difference between the three possible operations “robot 1 loads
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work positions of robot 1 or human operator”, Fig. 23(a) presents, for example, the
transition t2 of the H-L-PN of Fig. 18 as a pair of temporized transitions t2; and t2,.

Since the simulation of the temporized evolution of the TPN of Fig. 23 imitates the
behavior of the flexible production cell as it evolves over time, basic for the approach
of this simulation is the existence of specifications about work-plans to be developed
in the system, priorities for performing particular operations, etc. These specifications
help solving conflicts and defining wished sequence of operations. Fig. 23(b) and (c)
depicts the above concepts by means of two possible temporized evolutions of the
exemplary cell.

Conclusions

The material-flow specifications of a flexible production system can be perfectly vali-
dated by means of the simulation of the token-game of a temporized H-L-PN model.
For this purposes, the H-L-PN model of the layout of the system is enhanced with the
attributes and properties of the Temporized Petri Nets (TPN) defined in chapter 2. Nev-
ertheless, for a given layout, it is very important to consider that the temporization of
the transitions of the model, i.e., occurrence-modes, must be compatible with the tim-
ing characteristics of the systems’s resources, and the temporized evolution of the net
with the specifications of work-plans, which are to be developed in the system.

3.4 Combining Modeling and Validation Approaches
for Design of Flexible Production Systems

Combining modeling and validation methods mentioned in sections 3.2 and 3.3, the
research of this section is dedicated to development of theoretical foundations and to
presentation of a practical procedure of formally FPS designing with H-L-PN. The idea
is to get useful information about structure and behavior of the FPS by reasoning on
the structure and behavior of its H-L-PN-based model (i.e., validation of specifications).
In other words, the model reflects the set of specifications of the FPS by means of its
properties. Moreover, the synthesis of such a formal model can be done by taking into
account that it fulfils a set of properties because of the modeling requirements consid-
ered during its development.

The integration of modeling and validation is based on the following main result /21/,
/117/: "Only having, among others, the properties boundedness, conservativeness,
deadlockfreeness, reversibility, the H-L-PN model will be seen as a safe formal specifi-
cation of a flexible production system".

An analysis of results of the simulation approach presented above shows that an ex-
haustive (complete) validation of the FPS specifications requires that the properties of
the model are proved under all possible conditions. As depicted in Fig. 23, combina-
tions of feasible values of model variables, e.g., enabling condition of transitions, can
generate many logical paths in the model execution (different behaviors of the FPS).
Due to time and budgetary constraints, it is impossible to validate the accuracy of all
logical paths. Therefore, the purpose is to increase the confidence in model credibility
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as much as by its formal properties, i.e., properties of its structure, rather than trying
to test the model after its conception.

The approach proposed here relies on the fact that the FPS structure and behavior
specifications have to be formally represented by means of place- and transition-flows :
of the H-L-PN model. Fig. 24 depicts the results of applying this formal synthesis

method to a sample flexible assembly cell (more details about this flexible production
cell can be found in /38/).

R

To help ground the methodology, Fig. 24(a) depicts the desired system and producnon ﬁ
specifications. The H-L-PN-based model of the cell is developed taking into consnder.
ation the characteristics of its components, e.g., transport system structure and strate.
gies, robots, etc., and the set of possible material-flow specifications. Fig. 24(b) ang
24(c) show the H-L-PN-based formal description, of the desired production-path speci-
fication together with the involved resources, by using structural properties of the net.
So, each set of operations is formalized by means of a transition-support and the pos-
sible states of the involved resources by means of place-supports.

® Movement of a pallet for the specified production-path
(T-Support : t1 t2 t4 t6 t7 t9 t10 t11)

® Movement of pallets on buffer1 (T-Support : t1 t2 t4)

® Movement of pallets on buffer5 and the work of robot on it (T-Support: t4 t6 t7)
® Movement of pallets on buffer3 (T-Support: {7 t9 t10)

® Location of a pallet (P-Support: p2 p3 p5 p6 p8)

e States of transport-places in buffer1 (P-Support: p1 p2 p3)

e States of transport-places in buffers (P-Support: p4 p5 p6)

e States of transport-places in buffer3 (P-Support: p7 p8)

The flow of parts and information at the production level will be formalized by means
of composition of transition-supports as depicted in Fig. 24(d) and 24(e) respectively.

It should be noted here that the resulting H-L-PN is by no means a complete formal
description of the real production environment. It is rather a skeleton that constitutes
a first iteration through the FPS development. Nevertheless, it offers the following im-
portant advantages:

e The resulting structures and behaviors do not contradict the specifications: the
model is correct by construction.

e The formalized specifications are maximally permissive: all states and operations
which do not contradict the specifications, and are contained within a place- or
transition-support, are in the reality allowed to happen.

As main result, the production engineer has a H-L-PN-based virtual production environ-
ment which is a faithful representation of the real system and behaves according to the
desired production specifications.
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3.5 Summary

Based on a couple of intuitive examples, a new methodology for performing the mode-
ling and validation of flexible production systems using High-Level Petri nets was is-
sued in this chapter.

The proposed methodology is based on both, the design of reliable H-L-PN models of
FPS and the application of model analysis concepts extracted from the Linear Algebra
and Functional Analysis Theory. An H-L-PN model of the flexible production system :
under study is built starting with the evaluation of products to be processed, character-
istics of the resources and layout of the system, and the specifications of possible
material-flows. The analysis of the model is then performed which is mainly based on
the evaluation of structural and behavioral properties associated with invariant relation-
ships. The results of the analysis are finally used to validate the model in relation with,
among others, resource capacities, avoidance of deadlocks and cyclic behaviors.

The presented approach shows several attractive results which can be viewed from, at
least, three aspects.

® Costly analysis of qualitative properties of the generated models can be avoided
before an H-L-PN-based controller is fully implemented in a practical production
system. Thus the re-work and re-analysis methods, based on conventional model-
ing-simulation approaches, can be eliminated.

® CQuantitative analysis, i.e., calculus of performance indexes, can be derived by
associating appropriate time specifications with model parameters. Such predicted
performance indexes can be used to support the FPS designing process.

® The resultant H-L-PN can be converted into a DECS for real-time control and moni-

toring, i.e., supervision, of the system, as will be shown in the following two chap-
ters.




4 High-Level Petri Net-Based Design of Hierarchical
Control Structures of Flexible Production Systems

The validated, failure-free H-L-PN model of the layout, coordination system, of flexible
production systems achieved in chapter 3 can be seen as a good discrete-event dy-
namic scheme /21/, /117/, and it constitutes now the skeleton of a hierarchical discrete-
event control structure of the production system.

In this chapter is presented the description of a formal specification methodology,
which represents the knowledge for mapping from functions of the H-L-PN-based spec-
ification of the coordination system, to components, e.g., resources, of the system,
which has to be controlled.

Important consideration about the H-L-PN-based hierarchical discrete-event control
system is that its internal behavior, i.e., token-game of the net, will be performed using
model-based information (marking of places, enabling-conditions, firing-modes and
guards of transitions, detection of conflicts, etc.), and also using signal and information
sensory feedbacks coming out from the production environment (occurrence of events,
states of resources, report of errors, etc.). This leads to the following main result, real-
time model-based and feature-based monitoring of the processes, developed in the
production system, can be concurrently performed with the control of them by the
same H-L-PN-based component of the hierarchical control system.

4.1 Why a Hierarchical and Distributed Control Architecture Based on
High-Level Petri Net?

As it has been shown in chapter 2, control of flexible production system is currently
performed by means of distributed and hierarchical DECS structures, which aids to
resolve three main critical issues in controlling the behavior of the production system
on the shop floor: flexibility, complexity and applicability /92/.

Basically, the DECS has to perform the following main functions:

i) the real-time monitoring of the system behavior via sensor feedback and model-
based information coming out from the discrete-event controller,

ii) control evaluation (determination) in accordance with a supervisory control law,
which maps the production system behavior to corresponding controls, and

iii) control enforcement via the downloading and execution of the appropriate control
functions /5/.

After performing the design and the validation of the coordination model of a flexible
production system, the manufacturing engineer will have established two separated
functional worlds:

e Real production world (production environment)
The specifications of a set of hardware components, i.e., machines, robots, convey-
ors, etc, capable of providing the wished production specifications, and the corre-




1

78 4 High-Level Petri Net-based Design of Hierarchical Control Struct,.

sponding layout of the flexible production system to be controlled including the
sensor/actuator interface, e.g., process interface (Pl) (see Fig. 25); :

® Mathematical-graphical model of the production world
A validated H-L-PN-based model of each hardware component and of the layout of
the system (coordination system).

However, neither a structure for the generation of the control and monitoring functions
defined above, nor a correct formalism for describing a close interaction, i.e., a syn-
chronized behavior, of both worlds have been defined.

It is certainly true that the H-L-PN-based coordination model designed in the last chap-
ter represents correctly the behavior of the flexible production system, and it could be
used as basis for performing the addressed control functions. Nevertheless, this model
is not sufficiently powerful to do both, to represent the necessary control hierarchy
illustrated in section 2.3.1 and to communicate with the real production environment.

Principally, a new set of specifications which must be fulfilled during the design phase

of the H-L-PN model and an extended modeling methodology needed to enable the

transition from the coordination model to a detailed and functional H-L-PN representa-
tion of the components of the DECS.

Firstly, this transition should preserve all the specifications of the production system
captured and validated by the coordination model, it has to incorporate new specifica-
tions related to control objectives, and it has to be able to allow a synchronized evolu-
tion of both, the real production world and the H-L-PN-based DECS.

Secondly, the performed extensions in the H-L-PN coordination model have to cover
all new specifications related to the exchange of signals and information between the
components of the distributed control architecture, i.e., logic control, monitoring, dis-
patching, etc., and controlled production environment.

Finally, the conceived H-L-PN-based DECS has to be able to ensure that all the produc-
tion orders coming from the upper level of the control hierarchy will correctly be con-
verted into control sequences, to detect and recognize the state of the system, and to
achieve proper sequencing and synchronization of events in the coordination control
level.

Faced with the growing complexity of the flexible production systems, it would also be
convenient to hide the technical details of the (real) devices in the control system. From
the point of view of the DECS, only addressing of sensors and actuators present as
attributes in the H-L-PN model of the controllers would be recommended.

In order to bridge the gaps described above and taking into account the results ob-
tained from chapter 3, the purposes here are:

e to provide an easy-to-understand view of the manufacturing equipment by means
of a transformation of the real components of the production world into a kind of
virtual technical description (see section 4.1.1), and
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e to present an approach to extend the description capacity of the H-L-PN coordina-
tion model with complementary attributes and elements for describing and imple-
menting the main functions of some of the highlighted components of the hierarchi-

cal and distributed DECS architecture described in Chapter 2 (see section 4.1.2).

4.1.1 Flexible Production Environment with Process Interface

For the purpose of this work, the process interface of a flexible production environment
and the flexible production environment self are considered as an integrated entity,
e.g., a logic component of the production environment, situated at the bottom level of
the hierarchical control architecture.

As illustrated in Fig. 25, the process interface acts as local port structure of the system
and is responsible for the information and signal exchange between the production
environment and the highest components of the hierarchical control system. From the
control and monitoring point of view, the process interface can be considered as the
process itself, i.e., there should be no direct access to the drivers of technical devices,
such as I/O-ports or object identification systems, in the following referred to as ident
system. Rather there is only the possibility to access a kind of virtual technical compo-
nent. The process interface has to hide all unnecessary details in order to provide an
easy-to-understand view of the manufacturing equipment /98/.

Detailed discussion about this logic component is beyond the scope of this work. For
more information consult a description of an architecture of a process interface based
on both, Profibus-DP (Digital Periphery) technology and Dynamic Data Exchange
(DDE) based information processing.
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4.1.2 H-L-PN-Based Coordination System of the Production Environment

Fig. 26(a) shows in this chapter the part of the DECS structure of Fig. 4 formally and
technically designed by using High-Level Petri net as specification tool.

Planning and Scheduling Performance

Real-time Information

Planning and Scheduling

Dispatching Real-time
Orders information Performance

c
Dispatcher X U t ] ! S
e £8 H-L-PN-based Logic Control = '5§
Monitoring and e and Monitoring System ‘ ®
. : Visualization O ST o
Dispatching

Orders

States of Resources

Problems to be
solved

Error Messages
Parameters of
the Processes

Coordination and
Logic Control

Signal  Signals Signal Signals
= to from —_———————— - e ok e e e — to —— from  ——
actuators sensors  Signals from hardwar actuators sensors
components
(Sensory feedba(I:E)

Flexible Production Environment
with Process Interface

(a) Hierarchical and distributed DECS ' (b) Proposed H-L-PN-based approach

Fig. 26: H-L-PN-based Control and Monitoring of Flexible Production Systems

Each of the components considered in Fig. 26(a) has properties characterizing their
behavior:

e Local static specifications
Each component is especially defined for a principal purpose, monitoring, coor-
dination, logic control, etc. This leads to a specific description of the static structure
of each component from the point of view of a H-L-PN-based specification.

e Local dynamic specifications
Each component has a proper dynamic completely related to the tasks that compo-
nent has to perform in the structure. In this case, also, appropriate characteristics
and additional constraints must be fulfilled as extension of the enabling/firing condi-
tion of transitions in the H-L-PN-based coordination model to get a better under-
standing of these specifications.

e Local port structures
The components communicate via messages and exchange information and sig-
nals in order to perform their functions in a synchronized form. This leads to the
definition of new parameters and attributes in the H-L-PN coordination model that
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allows the communication and exchange of signals between its elements (e.g.,
places, transitions, colored markings), the real production environment and the
other components of the DECS, i.e., dispatcher, scheduler, planning level, etc.

4.2 Integration of Coordination Functions and Logic Control
Functions using H-L-PN-Based Specifications

Material-flow specifications are implemented and manipulated in the production envi-
ronment by means of production orders, coming out from the upper levels of the hier-
archical discrete event control system. However, to ensure that all conversions of the
production orders will correctly be done, the operation of the production environment
must be controlled by a special unit, able to detect and recognize the state of the
system, and to achieve proper sequencing and synchronization of events in the coor-
dination control level. This is a logic control unit which is responsible for the supervision
and interaction between physical components of the production environment and the
components of the control system /40/, /115/.

Inspired by the description of the layout of the production system and the set of opera-
tions to be performed in it, mapping between the hardware specifications of the sys-
tem, has to be initially done, i.e., resources and components on one hand, and the set
of basic tasks to be carried out in each component on the other hand, . The results
of this phase can be formally specified as follows:

Definition 35: SA={say, say, ..., 5aj,....,5an} is the set of actuator-signals sent from the
control system to the actuator-interface of the production environment. Sl={siy, Si2, .-,
sij,....,Sin} is the set of sensor signals coming from the sensor-interface of the produc-
tion environment to the control system. O={04, 02, ..., 0j,....,0p} is the set of operations
of a production-path performed in the production environment, e.g., movement of a
pallet in a buffer, work of a robot, etc. R={ry, r2, ..., fj.....,fs} is the set of resources of
the flexible production system, i.e., robot, conveyor, storage system, etc. C={c4, Cz,
.-+ Cj,.....Ch} is & set of hardware components, e.g., stopper, identification systems,
motor, etc. CF={cf,, cfy, ..., cf;,...., cfi] is a set of control functions such as set, reset,
read, write, etc.

The H-L-PN-based coordination model itself contains a substantial amount of the above
addressed specifications, and it constitutes now the starting point, i.e., the skeleton,
from which the detailed design of the logic control system can proceed.

The detailed design of the H-L-PN-based controller involves developing the H-L-PN
description of the coordination system until it contains all the information needed to
describe the required architecture and functionality of a logic control system. It is a
significant improvement in order to map places and transitions of the coordination
model of the logic controller into the components and elements of the sensor/actuator
interface of the controlled system.
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{
As final result, the H-L-PN-based model of the logic control system will be made up of
two main components hierarchically organized: the coordination control system and a
local/logic controller embedded in the first structure. |

4.2.1 Extension of the Structure of H-L-PN for Modeling Logic Control Functions

In order to add new possibilities for implementation of logic control architectures using
High-Level Petri Nets, additional constraints must be fulfilled as extension of the enab-
ling/firing condition of transitions in the coordination model.

New Considerations about the Classical Guard Form

First modification can be done on the original definition of the net guards. The purpose
here is to define additional constraints related to the occurrence-colors (occurrence-
modes) of a transition.

Definition 36: The form and structure of the guards G&(t) must include the following
set of mathematical operations {"=", "s", "2", "<",">"}.

Vite T => [Type([G&(t)]) = Boolean A Type(Variable([G&(])) & C + NJ

The new form of the guards allows to compare components of the complex color do-
mains (e.g., cartesian product color domain) with each other and with integers. For
example, if t2e T

YV cke C(t2): G&(t2)=(proj(4).succ(4)=5); G&(t2)=(proj(3) >2); G&;(t2)=(~cy) =
G(t2) = G&(t2) v G&,(t2) v G&s(t2)

Augmentation of the Transition Enabling/Firing Condition using Timers

Definition 37: For some transitions t € T in the H-L-PN logic control model, a Boolean
function of a non-negative real variable can be defined as Timer-Guard [TG(1)]:

Vte T [Type([TG(t)]) = Boolean A Type(Variable([TG(t)])) C R*]
Example of a Delay-Guard is:

[TG(t)]=k, whereby k € R*

Two possible forms of using this guard are proposed below.

1) The Timer-Guard is used as a delay of the firing condition of transition.

1) The Timer-Guard is used for implementing a watchdog mechanism to detect wrong
situations during the evolution of the H-L-PN as logic controller (see chapter 5, section
5.3).

Exchange of Physical Signals between H-L-PN-Based Logic Controller
and Production Environment

The evolution of a flexible production system and the information- and signal-exchange
between production system and discrete-event control depend continually on the state
of the system. In order to implement discrete-event control system, it is also very im-
portant to take into account a set of signals coming from the sensor-interface (actual
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state of the system) and a set of signals to be sent to the actuator-interface of the
controlled system (actions to be performed in order to change a state).

New Boolean functions (guard related to sensor/actuator signals) can be defined.

Definition 38: For some transitions t € T in the H-L-PN model (coordination control
and/or logic control model) a Boolean function of AND/OR/NOT logical operations of
Boolean variables related to the actuator- and sensor-signals can be defined as Sensor-
Guard [SG(1)]:

Vte T [Type([SG(t)]) = Boolean A Type(Variable([SG(t)])) € SAUSI]

An example of Sensor-Guard is:

Vijkrx € N,

[SG()]=[si; A (—Ssa) ASijA...]V [sa(—Si) A...]

where —si is the complement of the Boolean variable si
—-siy = 1 exactly when siy = 0

Definition 39: For some transitions t € T in the H-L-PN model (only logic control model)
a function related to the resources, hardware components and to the control functions,
which are to be enforced in the production environment, can be defined as Action-
Guard [AG(1)]:

An example of Action-Guard is:
Y 1, g, che = [AG()]:[r.cj=cf]

So, it is necessary to have the hardware description of the system under study for
defining Action-Guard.

Solving Conflicts during the Evolution of a H-L-PN-Based Controller

Despite the enhanced flexibility due to the use of High-Level Petri Nets for modelling
discrete-event systems, in a discrete-event control structure based on this tool, a set
of conflicts during the evolution of the net has to be solved /71/, /115/. This problem
is modeled whether by means of a set of parallel enabled transitions, or a set of occur-
rence-colors of the same transition in the coordination model, which compete for a
common resource /17/. In order to avoid a static solution for this problem as described
for eéxample in /22/, a real-time decision system and a planing tool are needed for the
support of the evolution of H-L-PN-based logic controllers (see Fig. 4).

Below is defined a new guard related to the transitions of the net. By means of this
guard, data and information exchange can be performed between the real-time deci-
sion support system and the coordination control level (see next chapter).

Definition 40: For some t € T in the coordination model and for each G&;(t) (definition
36) which occurrence-colors are in conflict with the occurrence-colors of another G&;(t),
the real-time decision system must define a value of a Boolean decision-variable (e.g.,
bdwt;, bdwt)). Then, a Dispatcher-Guard [DF(t)] is defined as mapping from transitions
into expressions of type Boolean, i.e., [Type([DF(t)])=Boolean].

[DF()]=U ; « 1.n) [bav; A G&(1)]=
=[bdvy A G&q(t)] V [bdva A G (D] V...V [bdvy A G&n(1)]
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Corollary 1: For some t € T in the coordination model and the set of occurrence-colors
in conflict {G&(t), G&;(t), G&(t)} (definition 36), the real-time decision system gives
value true to one, and only one, Boolean decision-variable of the set {bdyv;, bdvj, bdv}.

4.2.2 Modeling

In order to achieve a formal specification of logic control structures using Petri nets or
color Petri nets, top-down methodology is now applied so that some elements of the
H-L-PN-based coordination model are refined step by step in order to include enough
system operation details for the purpose of hardware implementation. For example, the
basic transport operations of a modeled production-path are further refined using basic
tasks, such as move, place pickup, place put in buffer, get from buffer, stopper out,
cross transport in, etc.

This work proposes a stepwise refinement of the the transitions of the net or their
firing-mode (occurrence-colors) that model physical operations in a H-L-PN coordina-
tion model. Top-down synthesis proceeds by assigning an underlying sub-net (PN/H-
L-PN) to some of the transitions, where the new obtained set of Petri net elements (e.g.,
transitions and places) model technical actions, the processing of real signals to be
exchanged between the discrete-event control model and the sensor/actuator interface
of the production environment, and the exchange of information among levels of the
hierarchical control structure.

The association between elements of a sub-net and basic tasks performed in the
manufacturing environment enhances the modeling power by providing a discrete-
event control structure which evolves synchronizing with the first one. This synchroniza-
tion determines the movement of tokens in the H-L-PN-based model and, at the same
time, the evolution of the controlled system from one state to the following one. The
goal of the refinement method is to establish a set of rules for combining elements of
the net that preserve the number and direction of flow of tokens in the original coor-
dination net. This must be the goal, since creating or destroying tokens will alter the
liveness and boundedness properties of the net /101/.

The functioning of such a H-L-PN-based logic controller has to fulfill the following be-
havioral specifications:

® The logic controller unit receives signals input coming out from the production envi-
ronment. Using this information (actual state of the manufacturing environment) and
the actual marking of the net, the coordination model plays the "token-game"” of the
net.

Explicit specifications of the signals, which are to be exchanged, between production
environment and logic control system have been incorporated into some dedicated
extensions of the original Petri net interpretation /11/, /26/, /54/, /112/. Input signals
affect changes in the state of the system, and are strictly bound to events, and conse-
quently to transitions. Several signals may form a logic function, describing a pre-
condition for an event. Such a function is incorporated in the model by means of the
new guards defined in the last section.
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e The control unit should be able to assert control enforcement (output signals or
instructions) which have to be sent to the controlled system both, when the system
stays in a particular state and when a stated event takes places. This means that
outputs of the controller can be associated with both, places and transitions. Out-
puts which are associated with places are Moore-type outputs /4/. They depend
only on the local states of the system, and are asserted whenever the associated
places have tokens. Outputs associated with transitions depend, not only on the
state of the system, but also on the inputs used in the guards associated with the
transition. Therefore, this kind of outputs of the controller are Mealy-type and they
are asserted whenever the associated transitions are fired /4/.

Note: Only Mealy-type of outputs will be considered in this work.

The refinement method, applied to the transitions of the coordination model that model
physical operations, is carried out taking into account the following set of rules:

Rule 1: The sub-Petri nets are a kind of interpreted and synchronized Petri nets /11/,
/102/. The evolution of these nets is performed in a synchronized manner with respect
to some external signals coming from the manufacturing environment (see section
2.5.3).

Rule 2: For a refined transition in the coordination model a sub-Petri net is defined for
each firing-mode or any combination of them.

Rule 3: Each sub-Petri net has a "start-transition / input-transition (without pre-condition
places)” and it has an "end-transition / output-transition (without post-condition
places)”.

Rule 4: The arcs of a sub-Petri net have attached some of the functions previously
declared, i.e., functions defined in the coordination model. These functions must be
evaluated with respect to the enabled occurrence-color (enabled firing-mode) of the
refined transition.

Rule 5: With the transitions of a sub-Petri net can be attached the same types of guards
above defined. The purpose of these guards is also to define additional constraints,
which must be fulfilled before the transitions are enabled.

Rule 6: Each sub-net has one monitor place. This place will be marked with an unco-
lored token as initial marking which will be consumed by the start-transition, when it
fires. After firing the end-transition, the monitor place recovers its marking.

Rule 7: Technical actions and tasks performed in the manufacturing environment, e.g.,
robot picks a part, stopper up, etc., are associated to the marking of the places of the
sub-nets. The control enforcement, e.g., signals to be sent from the control system to
the actuator-interface for performing these actions, is generated from transitions of the
sub-nets which pre-condition places become the corresponding tokens. As an example
of these possible actions can be considered: send a signal "start-program” to a robot,
call a routine for the identification of parts to be processed, etc.

Rule 8: Physical signals (e.g., sensor signals) coming into the sub-Petri net are
associated to guards of transitions. As an example of these inputs from the production
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environment can be considered: "finish-signal” from a robot-program, part has been
identified, pallet reached position, etc.

It is very important to point out that an operation modeled by a transition in the coor-
dination level can be decomposed into a number of elementary control tasks
associated with a new set of transitions. Each transition, resulting from the refinement
process, implements a sequence of conditioned decisions, resulting in a sequence of
control actions, related to one color or tuple of colors of the set Q°. If two or more
transitions (e.g., occurrence-colors) are concurrently enabled and they are also in con-
flict, it is extremely distinctive feature that one, and only one, transition (e.g., occur-
rence-color) can be fired at a time. Because of physical restrictions, i.e., the utilization
of a shared resource, only one action can be performed at a time. Normally, the actions
performed by refined transitions which are not in conflict can run parallel and interact
with each other, giving rise to a concurrent process environment.

The incorporation of a sub-net as a part of the H-L-PN-based coordination model is
performed as depicted in Fig. 27.

Coordination level

pb t a5
[ Operation in the coordination level }———
o pd

| State in the coordination level |

- :
6 tj (End) tj (Start)
Ot o-ﬁ;
;l: tj (sub-net)

| Action in the logic control Ievel] Logic control level

Q pa
ro [ Event in the logic control level]
pd

Fig. 27: Refinement of a Transition in the H-L-PN-based Coordination Model

Remark: The top-down method enhances the modeling power by providing the follow-
ing main characteristic: the flow of tokens into and out of the sub-net must be the same
as in the portion of the original H-L-PN-based coordination model that has been refined.

Fig. 28 and 29 show the main characteristics of the evolution of a H-L-PN-based logic
system and the form of interaction between manufacturing environment and the ele-
ments of a H-L-PN-based discrete-event controller, obtained after the application of the
above detailed refinement method.

In order to show an application, Fig. 30 presents the refinement of the transition t2 of
Fig. 18 which models the operation "robot 1 loads the work position of robot 2 with a
part type 1 from the input position”.
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Fig. 28: Token-Game performed in a H-L-PN-based Logic Control System
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Fig. 29: H-L-PN-based Discrete-Event Controller | Coordination + Logic Control

This operation modeled in the coordination level can be decomposed into the following
set of tasks (technical actions) to be done at the logic control level:

e robot 1 picks up the manipulation tool (preparation)

e robot 1 picks up a piece of type 1 and reaches the work position of robot 2
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e robot 1 puts the piece in place (work position of robot 2)
® work position of robot 2 is preparated for holding a type
® robot 2 opens the gripper for receiving a part of type 1

Each of the above described tasks will be performed in the production environment
only if the necessary control signals, generated by the logic control system, are en-
forced to the controllers of the involved hardware components (robots 1 and 2) within
a determined control sequence.

Coordination Level Logic Control Level

Transfer of marking information from coordination to logic control level

. ____—_————_—————._———

| Robot 1
colored token from Q° / / t
i.e. <mq,ry,py,<®> >/§/// (AG(0)]
: -
/7 . pick up
l// 4 gripper
p3 / see
[G(td)]
id - pi [AG(td)]
: «»-pick up a piece
and reach

‘6 e position

id [G(te)]
: [AG(te)]
put the piece
p4 I '« inplace
|
{—-l—, (G(th]
== _|:—_—_:.=:=.:—_.—_—_—_—j_ _____________ =

Transfer of toi}en-game from logic control to coordination level

Fig. 30: Example of a H-L-PN-based Logic Control System

Evolution of the High-Level Petri Net-Based Controller
synchronized with the Production Environment

Definition 41: If TASK={tay, tay, ..., ta, } is a set of tasks in the production environment,
modeled by means of the sub-net places in a H-L-PN-based model developed for con-
trol purposes, a "function action” is defined as

FT: R(Mg) — A
and it can also be seen as a functional vector of Boolean functions
FT = [t1(m(p1,Cp1)), T2(M(P2,Cp2)), 13(M(P3,Cp3)),..., Ta(m(pn,cpn))]

Note: By considering the evolution rule of an OCPN and the definition of "occurrence-
mode functions” (see section 3.3.2) the function FT can be expressed as linear com-
bination of I' functions.

Fig. 31 shows an application of the above defined function.
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Yt C_Task_Dv(t2)
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t1
s proj(3,4) (12) = id.m(p3) * [G(t1)]
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Fig. 31: Example of a "function action”

t(p3) = y(t1) * ¥(t2)

If a place pi of the logic control model is marked, the value of the function 7; associated
with this place is true. In this situation, the modeled task ta; was already started and
it is currently being performed.

Definition 42: If a transition t in a sub-net has associated Timer-Guard [TG(t)] as a delay,
as soon as it is enabled, it sets a timer at the value defined for [TG(t)]. The transitions
will be effectively enabled to fire when the timer reaches the value 0.

Definition 43: A transition t € T in the coordination model is effectively enabled to fire
with respect to a combination of occurrence-colors G&;(t) if, and only if:

— tis marking-enabling and the guard [G&;(t)] is true,
— [SG(t)] is true (i.e., [SG(t)] has the value 1) and
— [DF(t)] is true (i.e., [DF(t)] has the value 1).

Definition 44: When a transition in the coordination model is effectively enabled to fire
with regard to a firing-mode, its firing is performed in three phases:

® start firing phase

In this phase, colored tokens corresponding to the enabled firing-mode are re-
moved from input places of the transition.

e firing-in-progress phase
With this phase are associated the evolutions of the sub-Petri nets, which are ob-
tained after the refinement of the involved firing-modes of the transition. The evolu-
tion of the sub-nets is also done taking into consideration the exchange of signals

between the transitions and the sensor/actuator-interface of the controlled system
(see Fig. 29).

e end firing phase

In this one, the previously removed colored tokens are deposited into the output
places of the transition.

Summary: When a transition in the coordination model is effectively enabled (for a
certain occurrence-color or combination of occurrence-colors) it fires, and it then re-
moves tokens from its input places and adds tokens to its output places according to
the definitions presented in chapter 2. The number of removed/added tokens and the
colors of these tokens are determined by the value of the corresponding arc functions

(evaluated with respect to the occurrence-color or combination of occurrence-colors in
question).
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Proposition 15: After starting the first phase of firing for some occurrence-mode, a
transition in the coordination model can not begin a new firing of this occurrence-mode
while the first one is in progress. A new firing can start only after the previous one is
completed (the transition is said to be of single server type for each occurrence—
mode).

Proof: According to the modelling method described above, some firing-modes of a
transition correspond to an action or set of actions related to a resource of the
manufacturing environment (i.e., read a sensor signal and send a signal to an actuator,
pick-operation, transport of a pallet, etc.). Each of this actions is unique and can not
be repeated before the first one is over (physical restriction).C)

Proposition 16: Each modelled operation can be fulfilled in the manufacturing environ-
ment only if the corresponding transition (or occurrence-color) is not desabled by the
firing of another one in the H-L-PN coordination model. The H-L-PN model must be
persistent.

Proof: As stated in section 2.5.4, a Petri net is said to be persistent if, for any two
enabled transitions, the firing of one transition will not disable the other ones. A transi-
tion in a persistent model, once it is enabled, will stay enabled until it fires according
to definition 44.

This definition can be extended to two or more occurrence-colors of a transition in the
H-L-PN-based coordination model.0)

Definition 45: As soon as a refined transition in the coordination model is effectively
enabled and begins the first phase of its firing (definition 44) , the "start-transitions” of
the sub-nets associated with the enabled firing-modes are "atomic-fired (firing in one
phase)” /9/.

Definition 46: The colored tokens, associated with the enabled occurrence-modes and
removed from input places of a transition in the coordination model during the first
phase (definition 44), are distributed into the corresponding sub-nets. The number and
color of tokens, which evolve in a sub-Petri net, are defined by the enabled firing-mode
in the coordination model and the function associated to the arcs of the sub-Petri net.

Note: There are two cases related to the enabling-condition and firing of a transition
in a sub-Petri net:

® Firing with an autonomous behavior: the firing is independent from the state of the
environment.

e Firing with a non-autonomous behavior: all the conditions presented in definition 43
have to be considered in order to allow the firing of a transition.

Definition 47: As soon as a transition in a sub-net is effectively enabled, with regard to
an occurrence-color, it is immediately "atomic-fired (firing in one phase)” /9/.

Definition 48: The firing of a transition in a sub-net produces two concurrent effects:
e token-game of the net, and

e control enforcement via the downloading and execution of the appropriate control
functions defined by the Action-Guard [AG(t)] associated with the transition.
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Definition 49: The synchronized atomic firing of all "end-transitions” of a sub-Petri net

corresponds to the end of the third phase of the firing of the refined transition occur-
rence-mode in the coordination model.

This work considers that the evolution of the flexible production systems is synchro-
nized by a global clock. Then, a new transition firing rule has to be introduced.

Definition 50: All transitions are synchronized by a global clock, and so all enabled
transitions (i.e., enabled occurrence-modes) fire simultaneously, and the marking of the

net is updated only once per clock cycle. A structure like that of the logic controller is
said to be modeled by a synchronous Petri net /102/.

Conclusion

The static structure and the evolution of a H-L-PN-based model of the coordination and
logic control system of a flexible production system allows formal classification of this
model as "Synchronized High-Level Petri Net”, as defined in chapter 2.

At this point is very important to recall the following main issues:

e Control enforcements are generated by the H-L-PN-based DECS and messages are
sent from the Action-Guards of the controller to the plant.

® Sensor signals, which flow the reverse way, manage the discrete-event evolution of
the H-L-PN-based DECS. The messages coming from the production environment
are associated to the Sensor-Guards of the model.

These messages allow both, the model and the real system remaining synchronized.

The DECS at the bottom level is composed of two main intelligent information systems
(IIS) /110/:

e model of the layout of the flexible production system / flexible production cell (coor-
dination model) which composition involves knowledge and intelligence about the
static specifications of the resources and the dynamic behavior of the whole system
for achieving production objectives

e model of the control logic embedded into the first one with knowledge about the
technical, hardware, composition of the system and sufficiently intelligence to accu-
rately generate the necessary control enforcements related with the above consid-
ered production objectives.

4.2.3 Validation of Specifications

The validation of the control logic specifications is a very important step in the DECS
development process, because failures, generated during the setting into operation
phase of the control software, delay the time-to-market, raise the costs or may cause
severe damages. Only after the functions of the controller are validated and intensively
tested, it should be connected to the real production environment.

Let us assume, that the above addressed H-L-PN models were correctly developed,
taking into account the addressed set of rules. In the remainder of this section, a two
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phase-based validation-test approach is proposed (for more details, please consult
the fundamentals presented in section 2.4.3 and the references /18/, /21/, /41/, /84)).
The generated logic structure will be firstly, formally validated by means of functional
analysis and then an off-line simulation-based approach will be issued for testing the
control logic together with a 3D-kinematics model of the flexible production system to
be controlled.

Formal Validation

Below is introduced a set of basic requirements for modelling logic control structures
with High-Level Petri Nets. Taking into consideration structural properties of the nets,
the main goal of this is to guarantee a formally good behavior of the nets.

e R1) The whole set of places of the net and the places resulting from the refinement
of transitions (places belonging to a sub-net) must be covered by place invariants,
that is, every place must belong to at least one linear invariant of markings.

® R2) The initial marking of places of the coordination model must be correct.

® R3) All places of a sub-Petri net, except for the monitor place, do not have tokens,
neither at the initial marking nor after the firing of the "end-transition”.

® R4) Taking into account the definitions of "minimal and canonical support (see sec-
tion 2.5.4), it is principal condition for a good behavior of the nets, where all place-
flows of the model must be canonical (each non-null element must be unitary for
each color of the involved elements of Q*)-

Proposition 17: The sub-Petri net obtained after a refinement of firing-modes in the
coordination model has so many canonical place-flows as the number of refined firing-
modes.

Proof: According to the refinement rules, presented in section 4.2.2 and the basic defi-
nitions of H-L-PN, the incidence matrix of a sub-Petri net corresponding to one firing-
mode of a transition in the H-L-PN coordination model is a double diagonal matrix,
which elements are determined by the refined firing-color. The diagonalization of such
a matrix is simple and allows proofing the existence of only one place-flow involving
all the places of the sub-net that have relation with the refined firing-mode.O

Corollary 1: The number of place-flows of the OCPN-coordination model is augmented
exactly in the number of canonical place-flows of the sub-Petri nets obtained after ap-
plied the refinement of firing-modes.

: : al g : During the evolution
of the H L-PN model each place-ﬂow of a subnel possesses, one and only one, col-
ored token which is responsible for sending signals from the net to the actor-interface
of the controlled system.

Proof: Immediate by considering the requirements R1, R2 and R3 together with propo-
sition 15.0

e RS5) The transitions of a sub-net must be covered by transition-flows. For each tran-
sition and its corresponding firing-modes, at least one transition-flow can be found
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that contains it as an element. This condition assures the possibility of cyclic behav-
ior.

Proposition 18: Each sub-Petri net, obtained after the application of the top-down
method in the coordination model, has one and only one transition-flow related to each
refined firing-mode or combination of them. The cardinality of a transition-flow corre-
sponds to the number of transitions that comprise the sub-Petri net.

Proof: According to the refinement rules presented in section 4.2.2, the transpose of
the incidence matrix of a sub-Petri net corresponding to one firing-mode of a transition
in the H-L-PN coordination model is a double diagonal matrix, which elements are de-
termined by the refined firing-color. The diagonalization of such a matrix is simple and
allows proofing the existence of only one transition-flow involving all the transitions of
the sub-net, which have relation with the refined firing-mode. Then, each sub-net of the
logic control model is a mono transition-flow net /9/.0

Note: Each operation in the production environment is modeled by means of a transi-
tion of the coordination model. The refinement method above addressed provides only
a sub-net for this transition. The sequence of actions is unique. These actions are to
be generated by the logic controller in order to complete an operation in the produc-
tion-path. The behavior of the logic control system is totally deterministic and there is
not a possibility for conflict situations. This is possible, if and only if, the sub-net has,
one and only one, transition-support.

e R6) The sequence of actions performed in order to complete an operation in the
production-path corresponds to an equivalent occurrence/firing sequence of the
sub-net with firing count vector ® matching with the unique transition-flow of the
net. Then, the unique transition-flow of the sub-net has to be found for each contrql
sequence issued from a transition of the coordination model to the production envi-
ronment. With this transition-flow a repetitive or cyclic behavior of the sub-net for
the proposed logic control structure can be validated.

e R7) The H-L-PN must be live. Then, all the actions associated with the places of the

net can become a colored token and the corresponding associated action can be
started.

Remark: The last requirement is not easy to proof, because the check of liveness can
be replaced by the test of deadlockfreeness /117/.

By taking into account these requirements, the approach presented here provides crite-
ria to ensure that the method for refining High-Level-Petri Net models of logic control
structures does not destroy the correctness of criteria for optimal control of the dis-
crete-event coordination system developed in chapter 3.

For the sake of simplicity and without loss of generality, we restrict the attention to the
model depicted in Fig. 30. The structural analysis of this H-L-PN allows calculation the
following set of place-flows (p-flows)

e p-flowl: [0 0 0 pd pe pf 0 0 0] (relative to the robot 1).
e p-flow2: [papbpc 00000 0] (relative to the robot 2).

o
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e p-flow3: [0 0 0 pd pe pf pg ph 0] (relative to the coordination of both resour-
ces)

e p-flow4: [pa pb pc pd pe pf pg ph pi] (relative to all involved tasks)
and the following set of transition-flows (t-flows)

e t-flow1: [Start ta tb tc td te tf End] (relative to the firing-in-progress phase of transi-
tion t2 of Fig. 18).
Taking into consideration the functions and guards associated to the arcs and tran-
sitions of the net and the proposition 18, this t-flow can be also written
t-flow1: [(proj(1)+proj(4)) proj(1) (proj(1)+proj(4)) (proj(4)+proj(2)) proj(2) proj(2)
(proj(2) +proj(4)) (proj(1)+proj(4))]=
=[(<my>+<0>) <my> (<my>+<e>) (<o>+<ry>) <n><n> (<r>+
<8>) (<my>+<e>)]

From these results, it is possible to ensure that the proposed model correctly repre-
sents the given specifications. For example:

e From p-flow1 can be concluded that places pd, pe and pf can contain maximum
one token with the color <r; > and they are in mutual exclusion states during the
evolution of the net (proposition 17 and lemma 2).

® The states in which the robot 2 <m;> can be found are
—free before working (marking <m;> is in place p3 as part of the tuple
<my,ry,p;,<e>>)
—preparation (marking <m; > in place pa)
—open gripper (marking <my;> in place pb)
—wait for acknowledgment "piece in work position” (marking <m; > in place pc)
—wait for working (marking <mi1> is in place p4 as part of the tuple
<my,r1,ps,<®>>)

Structural analysis applied to t-flow? allows validating, among others, of the following
specifications:

e The enabling-condition and the firing of transition te issues the following events:
— The logic controller sends the signal "robot 1 <r; > put a piece in work position
of robot 2 <m;>" to the actuator-interface of the manufacturing environment by
setting the action-guard [AG(td)] (action / task is issued).

— The logic controller reaches a state with the token <r, > in place pf. This state
shows that the operation "put the piece in place” is right now performed.

— The logic controller waits for an acknowledgment from the sensor-interface of the
manufacturing environment by testing the value of the sensor-guard [G(tf)].

Note: After these events have been carried out, the component responsible for perfor-
ming the modeled task (robot 1) works and the sub-net is marked. Two synchronized
events are issued, one in the real production system and another in the modeled
DECS.

e The enabling-condition and the firing of transition tb for the occurrence-color
(<my>+ <e>) are produced after the evaluation of the markings <m; > of pb and
the sensor-guard [G(tb)].
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e The firing sequence composed of transitions {start, ta, tb, tc, td, te, tf, end} allows

the H-L-PN to return to the initial marking (the net is reversible for this sequence of
firing of transitions).

Integration of H-L-PN-Based Discrete-Event Platform and
Motion-Oriented Simulation

The result of the first approach is a first validated design of the logic control structure
that guarantees a correct behavior (e.g., deadlockiree, repetitive evolution, bounded-
ness of logic states, etc.). A complementary method for the validation is to carry out
a discrete event simulation that is mainly based on the token-game of the H-L-PN-
based controller.

In the following, this validated logic control structure has to be tested on the real pro-
duction system and optimized in order to fulfill the specifications. However, it is very
costly and it might be the case that the real system is not available at this time. Addi-
tionally, failures in the control logic could cause damages or endanger lifes. Therefore,
a simulation model of the real manufacturing environment based on a motion-oriented,
i.e., a 3D-kinematics, platform can be used as the controlled system and also used to
validate the control enforcements issued by the H-L-PN-based discrete-event controller.

Only if the test of the control logic with the motion-oriented simulation of the controlled
system is successful, the logic controller can be connected with the real production
environment.

In order to use a 3D-kinematics model for validation and test logic control software, the
model must have the same static and dynamic behavior as the H-L-PN-based discrete-
event system and the real manufacturing environment. Only then, a reliable statement
on the control logic can be made. This means that all elements in a real manufacturing
environment that interact with the discrete-event control system, e.g., actuators and
sensors, have to be modelled. As a consequence, also every possible error that can
encounters in a real cell, has to come up in the model under the same circumstances.

Fig. 32 shows the main steps, which must be performed for validating and testing the
control logic, embedded in a DECS structure using such a simulation-based approach:

e analysis of the specification of the manufacturing environment, i.e., specifications
of resources, layout and production environment plus DECS;

e building a CAD-model, building a kinematics model and adding of logical informa-
tion in the motion-oriented platform;

e validation of specifications and test of the control logic by evaluating the results of
the motion-oriented simulation controlled by the H-L-PN-based discrete-event plat-
form.

Some results on validation of the flexible production system's behavior using simula-
tions approaches have been elucited. Little has been done to generalize these results
to validation and test of control logic software for such kind of production systems and
to help for implementing these simulation-based methods at industrial level.
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iL.
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Fig. 32: Discrete-Event and Motion-Oriented Simulation to Validate Control Logic

An off-line simulation approach combining Petri nets in order to satisfy the discrete
aspects of a flexible manufacturing system and motion-oriented simulation for the con-
tinuous aspects is proposed by /10/. The main goal was to dimension the system un-
der study and to determine process control parameters. However, neither a closer look
how the simulation should be performed, nor special aspects dealing with the test of
the control logic, were presented.

In order to close these gaps, two possible approaches are here addressed.

The first one consists on connecting the discrete-event platform with the motion-ori-
ented simulation platform using the same process interface described in section 4.1.1.
In this case, the process interface is a mapping layer between three different systems:
the H-L-PN-based discrete-event controller, the 3D-kinematic platform and the real pro-
duction environment. Fig. 33 depicts the structure for implementing this approach /84/.

The second method for implementing a simulation-based validation and test of control
logic is based on the integration of both, H-L-PN-based discrete-event controller and
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motion-oriented simulation system. In this case, only one system is responsible for
performing the following main functions:

e validation of the flexible production system's behavior;

¢ validation of the control logic embedded in the DECS structure associated to the
FPS;

e setting the controller into operation.

An approach like this one for the off-line programing of a robot placement system for
electronic components is proposed in chapter 6.

L Discrete-Event Platform |
DDE

) MIRAGE - ZELLE_D1.CFG
|nterface Jest Diagnose Konfiguration

Process Interface |

control of a real cell
*—.

3D-kinematic
Simulation Platform

Fig. 33: Connection of Discrete-Event Control and Motion-Oriented Simulation Platform

4.3 Model- and Feature-Based Monitoring

Basic Concepts

High reliability of flexible production systems is a very important factor in gaining a
good position on the market. A very useful way to achieve this goal is to learn very well
the system and its working conditions (process conditions), and also the parameters
of operation of the embedded discrete-event control system itself.

In the changeable operations of flexible production systems, the only form of increasing
reliability is to use well adapted monitoring methods. Due to new developments in
sensor techniques and signal and information processing systems, as well as deeper
knowledge of the production processes and controlled equipment, there are growing
possibilities of using reliable, effective and low-cost monitoring systems /107/.

Generally speaking, monitoring a flexible production system requires three successive
phases. Firstly, the validation of the specifications of the production system, of its dis-
crete-event controller, and of the implementation (detection of coding bugs). The se-
cond step concerns the "on-line sensing” and "information collection” which is per-
formed with taking into account the real-time evolution of the production environment
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and of the control system. Finally, information and sensor-signal processing has to be
performed in order to obtain a set of indices related to the production environment and
its discrete-event control system /96/.

The application of these monitoring phases is only possible if the components of the
lower level of the hierarchical DECS are capable to handle enough information about
the evolution of the process and the behavior of components of the flexible production
environment, which is to be monitored. The resulting monitoring system has to gener-
ate the capability for the components of the DECS to communicate with the various
devices constituting the cell, and to gather the information provided by the devices’
sensors and model of the controller /5/.

Because of the noisy environment and uncertain signals coming out from the process
interface of the manufacturing environment and because of the complicated, uncertain
models of same production equipments or of the process to be monitored /107/, moni-
toring methods have to be developed and adapted to each case. In general, monitor-
ing methods can be divided into two categories: feature-based and model-based meth-
ods /30/. In the case of feature-based monitoring, process conditions related to the
behavior of components of a flexible production cell can be estimated using the in-
formation provided by the sensor/actuator signals coming out from the process inter-
face. Taking into account relationship between the features of the sensor/actuator sig-
nals and a set of monitoring indices defined for the production environment under
consideration, real-time process conditions can be then estimated by means of a clas-
sification task performed during the operation of the system /30/. When a model of the
flexible production cell and of its discrete-event controller is found, the information con-
tained in it and the evaluation of the parameters of the model during the real-time
operation of the system allows to perform monitoring functions. The approach is based
on the detection of changes of the parameters of the models and also on the relation-
ship between this parameters and the specifications of the modeled system. Such a
model-based monitoring can only be implemented if the flexible production system and
its discrete-event controller are correctly modeled and the selected modeling tool has
enough capabilities for representing static and dynamic specifications of both systems.

From a monitoring point of view, both integrated H-L-PN-based models (coordination
and logic control) can be considered as sources of a lot of information about the pro-
cess developed in a controlled flexible production cell, e.g., chronology of the opera-
tions performed in the production environment imposed by the production plans, and
also about the behavior of the discrete-event controller itself.

Both kind of monitoring methods can be applied:

e feature-based monitoring using the information contained in the process interface
and also in the sensor- and action-guards of the H-L-PN-based logic control struc-
ture, and

e model-based monitoring by means of the evaluation of both parameters of the H-L-
PN-based model of the controller, and of the information obtained during the evolu-
tion of this model synchronized with the behavior of the hardware components of
the controlled flexible production cell.
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Fig. 34 depicts a structure for performing these monitoring functions. As shown in Fig.
26, these functions have to be done in a module which works separated from the
coordination and logic controllers, but these structures operate in close interaction, i.
e., on the same H-L-PN-based model of the production system and its discrete-event
controller. Consequently, this structure has the capability to update a set of monitoring
indices mi, in run time, with perceived information coming out from the process inter-
face and also from the H-L-PN, without modifying the normal behavior of the production
environment. A main result of this approach is that real-time model-based and feature-

based monitoring of the process are concurrently performed with the control of the
process.

Fig. 34 highlights three main functions:

e collection of signals from process interface and signals and information from the
controller

e filtering of signals and information in order to get a more comfortable and interpret-
able form of them.

| Discrete-Event Control sttem | model-based Model- and Feature-based Monitoring System
- 2 Information —
-_‘L‘.’J;'%l = = ppmasroma || 9 Validation \
2| R | S |l Fittering of VM| ¢, Relation : P
3%} - model-based o v
‘53 o A ;» information |ss structqral analysis -
S fomudi | behavioral graph & M
¥ feature-based ' etc. :
= S Information
| G- 1 i)
ok Relation .
— Filtering of 8 | 5pajitical function |-
f_eature-b'ased a pattern fi
. i Information a decision tree
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m * Information
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Monitoring indices:  mi={miy, mip, ..., Mit}, t=m+n

Fig. 34: Structure of a H-L-PN-based Monitoring System

The sensory feedback coming out from process interface and also the information ob-
tained from the model of the discrete-event controller is not always expressed in com-
prehensive terms /5/. After the collection of signals and information, the second moni-
toring function (filtering) translates these into two sets which can be easily understood
and processed. The first one is a set of model variables vm = {vmy, vmo, ..., v}, such
as colored marking of places, occurrence-modes of transitions, guards associated with
transitions, incidence matrix of the net, etc. The second one is a set of sensor signa-
tures ss = {ss;, 85, ..., 8§/}, associated to signals of sensors and actuators of the
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process interface, such as a barcode supplied by an identification system associated
with pallets or other components of the production environment, etc.

e processing of signals and information to obtain monitoring indices.

The third monitoring function can be carried out in one of three ways depending on the
set considered as a source of information and the used monitoring method:

e feature-based monitoring —> processing of the information contained in the set ss
by means of two phases: "learning” of a relation & between the set ss and a set
of feature indices fi, and "classification” of the sensor signatures for obtaining the
feature indices fi during the evolution of the system. A detailed discussion about
this method is beyond the scope of this work /30/;

e model-based monitoring —> processing of the information contained in the set v
using analysis techniques of the structure of the H-L-PN-based models

e feature-based monitoring —> processing of the information contained in both sets
ss and vm using analysis techniques of the dynamic (evolution) of the synchronized
H-L-PN models.

New Approach

In the following, taking into account the methodology for the synthesis of flexible pro-
duction systems and their DECS presented in chapters 3 and 4, two H-L-PN-based
monitoring functions, i.e., feature- and model-based, will be presented.

A relation % can be defined between the sensor signatures ss; associated with the
sensor-guards of some occurrence-modes of the H-L-PN and feature indices fi; related
to the use of components of the production system, e.g., which stopper, which trans-
port system, which actuator is actually functioning in the cell?. But, from monitoring
point of view remains a very important problem that must be solved: which kind of
process related to the work-plan is currently performed in the cell?

In order to obtain an answer to these questions, two important points have to be taken
into consideration:

1) choosing appropriate monitoring indices for a reliable monitoring of the processes
performed in the production cell and of the evolution of its discrete-event controller is
crucial, and

2) a monitoring construct is necessary to cope with the operations and technical ac-
tions performed in the flexible production system and its control structure.

Assuming that the variables of the model have been identified, that the analysis of the
structure of the H-L-PN model has been performed and that a set of its properties has
been calculated, i.e., transition-supports, place-supports, mutual exclusion conditions
between colored marking of places, etc., a validation ¥ of the specifications of the
system and of its controller can be performed. From monitoring point of view, the same
validation technique allows obtaining a set of variables identified as sp = {spy, $py, ...,
spm} (specifications of the flexible production system and its controller), i.e., material-
flow specifications, control sequences, etc.
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The real-time synchronized evolution of the H-L-PN token player behaves as an ob-
server of the production environment and its control system /96/. It performs naturally
monitoring functions. In this case, an on-line reachability analysis of the net evolution
can be seen as a new relation ® from which a set of new feature indices fi can be

obtained, e. g., reachable states, production period of a processed part /22/, error
detection, etc.

Since both monitoring methods are concurrently performed, the set of monitoring in-
dices mi supplied by the proposed monitoring structure can be respectively defined as
the combination of both sets, fi and sp.

Fig. 35 shows a monitoring construction developed at the Institute for Manufacturing
Automation and production Systems, which performs a combination of both, model-
based and feature-based monitoring methods.

As a matter of fact, the H-L-PN models of the coordination and logic control compo-
nents of the DECS structure are also used as a source of reliable information about the
behavior of the system for building monitoring indices. This means that both integrated

models can be used as a unique control structure (coordination and local/logic control)
and monitoring tool.

Real-time Monitoring
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Fig. 35: Feature- and Model-based Monitoring using High-Level-Petri Nets

4.3.1 Model-Based Monitoring using the Real-Time Analysis of the Token-Game of
H-L-PN Coordination Control Models

As explained in chapter 3, when the H-L-PN is executed, a colored token in a place of
the coordination model will indicate the state of a resource: already free or busy by a
part, which part has been loaded in the resource, which task of a work-plan can be
performed, etc. The mechanism for performing the token-game of a H-L-PN-based
coordination model that was explained in chapter 3 is depicted now in Fig. 36.

"
AR L
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An analysis of Fig. 36 shows that the enabling condition of a transition or of an occur-
rence-mode of a transition will indicate, for example, which operation <opg> is already
performed on a part <part;> in the resource <machine;>.

In this case, it appears clearly that the monitoring system has an accurate knowledge
about the state of each modeled resource of the flexible production cell and also about
the operations actually performed in it. The token-game of the H-L-PN coordination
model, synchronized with the evolution of the production environment, which acts as
a source of process signatures and the real-time analysis of the reachable markings
of the net, allows the generation of a lot of feature indices, such as percentual use of
a resource related to a processed part, manufactured parts per time units, etc. /22/.

4.3.2 Model-Based Monitoring combining Real-Time Analysis of the Net Structure
and the Information obtained from the Token-Game

This kind of monitoring functions is performed by means of the same methods for the
structural analysis of the H-L-PN models used during their synthesis.

If the incidence matrix of the H-L-PN-based model of the DECS is analyzed during the
real-time evolution of the flexible production system, the information contained in the
structures of transition- and place-semiflows of the net and also these obtained from
the analysis of the token-game of the net allows performing an on-line validation of
many logical properties of the modeled resources: possible work-plans to be per-
formed in the system, sequence of operations, mutual exclusion relations between
states of resources, shared-resource problems, etc., and also of the whole system,
such as, among others, material-flow specifications.

As an example, let be proposed the monitoring of an operation of a work-plan per-
formed on a part. From the structural analysis of the net, a transition-semiflow has to
be found, which contains information about the color "operation <opy>" correspond-
ing to an occurrence-mode of some transitions. The set of transitions or occurrence-
modes related to the color <opy> that are contained in this transition-semiflow repre-
sents a sequence of transitions or occurrence-modes that have to be fired in order to
allow the net to come back to its initial marking or to a home-state. According to the
modeling method issued in chapter 3, this sequence of transitions or occurrence-
modes related to the color <opyg> corresponds to a sequence of technical operations
to be performed on a part in the manufacturing environment. When the net evolves and
a transition or the occurrence-mode <opy> fires, this information plus the information
contained in the reachability graph (which transitions have been already fired with re-
spect to this color) allows determination about which operations of the work-plan have
been already performed in the cell.

Note: The above depicted monitoring mechanism implies that the monitoring system
must combine both, the information from the structural analysis and also from the to-
ken-game of the H-L-PN model to perform this monitoring function.
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4.3.3 Feature- and Model-Based Monitoring of the Hardware Components Behavior
in Flexible Production Cells
Information obtained from the Structural- and Behavioral-Analysis of H-L-PN
Logic Control Models

It is certainly true that the coordination model addressed in the last section represents
correctly the behavior of the flexible production system, but the use of such a model
as basis for obtaining information from the control system adds a new set of restric-
tions which must be fulfilled before the monitoring system is implemented.
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Fig. 37: Monitoring of the Behavior of a FPC and its DECS, State 1

As described in this chapter, the H-L-PN coordination model of the system (e.g., model
of the process) is refined and then it constitutes the skeleton of the discrete-event con-
trol system. The association between elements of a sub-net and basic tasks performed
in the manufacturing environment enhances the modeling power by providing a dis-
crete-event control structure which evolves synchronized with the first one. This syn-
chronization determines the movement of tokens in the sub-nets (logic control model)
and, at the same time, the evolution of the controlled system from one state to the
following one. Both systems together act as a rich source of new monitoring indices.
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When the token-game of the H-L-PN-based model of the discrete-event control system
is executed, real-time information about the technical actions performed in the re-
sources of the manufacturing environment can be obtained. Feature- and model-based
monitoring functions are naturally implemented in the discrete-event control module. In
fact, as pointed out in section 4.2.2, the refinement of transitions or occurrence-modes
of the colored Petri net coordination model allows obtaining a new view of the produc-
tion environment: the flexible production system, from the point of view of the technical
components and of the actions to be performed in them, in order to complete the
production processes.

Fig. 37 and Fig. 38 show two consecutive states of a part of a flexible assembly cell

and the corresponding control enforcements generated by the H-L-PN-based logic
controller.
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Fig. 38: Monitoring of the Behavior of a FPC and its DECS, State 2

By analyzing of both states of the cell, following considerations about monitoring func-
tions can be derived:

® In H-L-PN-based model of Fig. 37 *f is a model-based pre-condition of the action
"load robot_program #20".

¢ In H-L-PN-based model of Fig. 37 the value of the sensor-guard [SG(t)] is a feature-
based pre-condition of the action "load robot_program #20".

e ¢ firesiff f1.m(*4)=1 and [SG(t)]=true. Two concurrently control functions are gener-
ated, the marking of px =¢* (logic function) and the control enforcement described
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by the action-guard [AG(t)] (technical function). From monitoring point of view, a
model-based monitoring function is performed taking into account the information
of the colored token of the place py, and a feature-based monitoring function by
considering the control signals sent from the H-L-PN-based controller (guard
[AG(t)]) to the process interface.

® pc=t* remains with the token "<>" as long as the sensor-guard [SG(t)] is false.
This means that the marking m(py) performs a model-based monitoring function
related with the tasks performed by the robot; and other informations contained on
o s

e Fig. 38 depicts all control and monitoring functions related with the operation of a
part of the conveyory, i.e., stoppers.

4.4 Summary

Although the H-L-PN used in chapter 3 are an adequate tool for modelling flexible

-manufacturing systems, they lack in the possibility to be used for real-time control pur-
poses. This chapter presented a methodology to extend the H-L-PN-based coordina-
tion models for real-time control of flexible production systems.

The main idea is to refine transitions and/or a firing-modes of the H-L-PN models devel-
oped in chapter 3, by assigning an underlying Synchronized Petri net, tailored for con-
trol purposes, to each of them. The transitions or firing-modes of the underlaying nets
model technical actions and give a concise description of the signals to be exchanged
between the H-L-PN-based discrete-event control system (a virtual production environ-
ment) and the real production environment.

A set of basic requirements for the modelling and a method for the formal validation
of specifications by means of the structural analysis of the models was also presented,

in order to guarantee a formally good behavior of the developed H-L-PN-based logic
control structures.

From a monitoring point of view, the main characteristic of the proposed H-L-PN-based
control structures is, that they allow clear visualization of the modeled flexible produc-
tion systems evolution. The net can be considered as an important information source
about the process developed in the system and also the behaviour of the components
of the system and of the embedded discrete-event controller itself. Combining both, the
information contained in the H-L-PN model of the logic controller and this coming from
the process interface, a very good view of all logic and technical states and actions
performed in the flexible production cell under control can be obtained. In this chapter,
two sorts of monitoring methods have been presented and a structure for their imple-
mentation was proposed: feature- and model-based monitoring.
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Architecture of Flexible Production Systems

To be able to show the concepts developed in this work, the attention is restricted to
simplified flexible production systems, which are, for simplicity reasons, without certain
complex cooperating behaviors as, for example, the case of two robots cooperating to
carry the same load, or such that one of them is holding a part while the other one is
performing machining operations on it. In addition, it is assumed that each resource
can handle sequential activities only. As a consequence of these hypotheses, the H-L-
PN-based logic control schema, developed in the last chapters, is restricted to incIL.Jde
only sequential or alternative activities performed by each resource, and synchroniza-
tion, mutual exclusion, and producer-consumer relationships among resources.

Nevertheless, the coordination and logic control components of the hierarchical DECS
architecture proposed in chapter 2 are not sufficiently powerful to solve some problems
generated in the field of control of flexible production systems. There are more situa-
tions in which a decision has to be made. Typical examples are processes with indeter-
minisms, i.e., material-flow and job release management — routing problems, Pat_h
planning and collision avoidance, etc. The proposed H-L-PN-based control structure i
unable to perform scheduling, and to handle anomalous behaviors, e.g., fault detec-
tion, disruptions on resource operations, material unavailability, error recovery, etc.

It is necessary to assist the developed control structures with another system with
enough intelligence, both to help the coordination controller to update the state regre*
sentation of the workshop in real-time and to make real-time decisions. First, QP?’at'on
research (OR) techniques have been widely used to support decision making in '_”dus'
trial production. However, difficulties have been encountered with the formulation of
models, management of data, and interpretation of results. Since many problems g
flexible production systems are usually unstructured or ill-structured problems that deal
with non-numerical or non-algorithmic information, new methods have to be searched
for /31/, 134/, 167/, [73/, 75/, 1113/, /116/.

The proposal In the framework of this research work, is to incorporate a new compo-
nent to the hierarchical DECS architecture, i.e., a real-time decision support system
(RTDSS) for performing dispatching and diagnosis/error recovery functions together
with the evolution of the H-L-PN-based control system.

5.1 Necessity of a Real-Time Decision Support System for H-L-PN
Controlling of Flexible Production Systems

As depicted in Fig. 39, the core of the DECS is a feedback control loop between coor-
dination and logic control component, monitoring and a RTDSS, which has to ensure
the system stability, robustness, and performance. The proposed feedback turns the
DECS into an investigation/decision structure /31/, /35/. All uncertainty and unexpected
events which can not be solved by the lower components are left to the knowledge
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in

corporated in the RTDSS and to the feedback control loop to handle. Based on signal

and information processing, the DECS allows one to easily formulate the control strate-
gies, by highlighting the decision mechanisms and makes possible quick adaptation
of control policies to real-time changes.

t Planning l
recommended strategies

N\ MIMHTTHTHTTTTTiiy \\\\'\\

Scheduler
: performance

---------------------------------------------------

detailed schedule —
Real-Time scheduling request Monitoring and
Decision Visualization
Support
System
‘ real-time information
[

dispatching
orders

———— —

request for
problem’s solution

Coordination
and
| Logic Control

feature- and model-based N

information signals to actuators
for error recovery

Fig. 39: Relation between Coordination and Real-Time Decision Support System

In order to accomplish:

the allocation of FPC's resources in an efficient form,

the movement of parts to resources in a way that reduces unnecessary idle time
of both, parts and resources,

the loading of parts into the system at scheduled times,

the selection of the proper sequence of machines a part has to visit, and the selec-
tion of the times at which the parts visit the machines,

the comparison of the set of the operations which are possible (because the re-
quired resources are free in the shop) with the set of operations which have to be
done in order to respect the production schedule and to make the right decisions
in real-time while also guaranteeing that production requirements are met,

the detection of abnormal behaviors and possible quick adaptation of control poli-
cies after diagnosis functions are performed,

the selection and setting into operation of error recovery strategies,
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a proper distribution of functionality between both coordination and real-time decision
support system, is important and this chapter has intention to explore this when the

lower levels of the control architecture are described with a H-L-PN-based approach as
shown in chapters 3 and 4.

As stated in chapter 3, operations such as the work of robots or the movement of
pallets are modelled by transitions or their occurrence-modes, and the states of the

resources in a flexible production cell are modelled by places and their colored mark-
ings in the High-Level Petri Net.

It is often the case that more than one operation can be performed in a production
environment at the same time. In this case more than one transition, i.e., occurrence-
modes, are enabled with respect to the marking of the net. Basically there are two
possibilities: either the transitions are allowed to fire simultaneously, or they are not.

This depends on the layout of the cell represented by the structure, and the marking
of the H-L-PN model.

The states of a production cell related with the second possibility are identified as "con-
flict situations” during the evolution of the H-L-PN, and their existence is revealed by
means of the structural analysis of the coordination control model /17/, /21/. The struc-
ture of the nets and the information associated to their components are sometimes not
sufficient for solving the indeterminism modeled by such conflicts.

In this work two kinds of problems, not solved at the H-L-PN-based Coordination Con-
trol System, will be addressed and a methodology for solving them is proposed below:
allocation of shared resources and material-flow specifications, and handling of errors
and failures produced during the real-time operation of the flexible production system.

5.2 Allocation of shared Resources and Problems associated with
Material-Flow Specifications

By means of examples, taken from the flexible production cell in Fig. 17, a case of
concurrency and another typical situation of conflict will be shown below.

The first example depicted in Fig. 40 considers the work of two robots at the same
time. The robot 1 is loading the work position of the human operator with a part type
2 and the robot 2 is processing a part type 1. Both operations are performed indepen-
dently from each other. Therefore, transition t2 is enabled with regard to the occur-

rence-color (my A pp) and concurrently, transition t4 is enabled with regard to the occur-
rence-color (my A py).

The second example consists on a decision-making process related with a set of pos-
sible operations, which can be performed by the robot 1. In this case, a decision must
be made on which operation has to be done, i.e., the robot 1 can perform one, and
only one, operation at a time. For example, a part type 1 is already processed by the
robot 2 and its work position can be unloaded. At the same time, the human operator
is free and its work position can be loaded with a part of type 2 or 3 that are on the
corresponding input positions of the cell. As shown in Fig. 41, transition t1 is enabled
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with regard to the occurrence-modes (<mp,ry,pz,<®>>) and (<my,ry,p3,<e>>), and
transition t5 is enabled with regard to the occurrence-mode (<my,ry,py, <e>>),
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* Fig. 40: Concurrency of Operations

This state of the cell presents the following typical indeterminism (conflict) situations:

® The occurrence-modes of transition t1 are in conflict with respect to the marking
colors <ry> and <my> (the robot 1 and the human operator are shared resources
with respect to the operation "loading”).

e Both occurrence-modes of transition t1 are also in a conflict situation with respect

to the marking colors <pp> and <pz> (the parts of type 2 and 3 compete for
being processed).

e the transitions t1 and t5 are in conflict with respect to the marking color <ry> (the

robot 1 is a shared resource with respect to the operations "loading work position
of human operator” and "unloading of robot 2")

5.2.1 H-L-PN-Based Formal Specification of the Problems

From the analysis of the examples presented above, two kinds of conflicts can basically
be distinguished: structural, ones related to the H-L-PN model, as in the last example,
and behavioral ones, related to physical constraints of the flexible production cell layout
and to the specifications of the operation plan to be developed in it.

Precise formulation of both kinds of conflicts is now given, in order to make this work
self-contained.
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Fig. 41: Conflicts between Operations

The structure of the place p2, having two output transitions t1 and t5 concurrently en-
abled with regard to the same marking color, as shown in Fig. 42, is referred to as a
structural conflict, decision, or choice, between marking-enabled transitions, depend-
ing on the application /74/.

|5t :
t; and ts are in structural conflict
proj(2) with respect to proj(2).m(pz) because
7 @ proj(2) proj(2).m(pz) € *ty A proj(2.m(p) € *ts
15

*y= {p;j/p;is input place to transition t;}

Fig. 42: Structural Conflict between Transitions

The structure of the place p1, having one output transitions t1 with two occurrenge-
modes concurrently enabled with regard to the same marking color, as shown in Fig.
43, is referred to as a structural conflict, decision, or choice, between marking-enabled
occurrence-modes, depending on the application /59/.

i 5 (ma A p) and (Mg A pa) are in structural conflict
proj(1) with respect to <m2>.m(p4) because

[(MaAPa)V (MaApy)] <M2>-M(P1) €ty manpz) A <m2>.m(py) € *t1,m2Ap3)

* 4 = {p;/p; Is input place to transition t;}

Fig. 43: Structural Conflict between Occurrence-Modes of a Transition
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Let M’ be the reachable marking from M after firing of transition t.

There is a structural conflict between t, and t, if, and only if:

e t,t, are M-enabled

e t,is not M'-enabled.

Two possible approaches can be proposed for solving a structural conflict:

e the colored marking of the places and the structure of the guards associated with
the transitions contain enough information to solve directly the conflict during the
evolution of the net

e a structure independent of the H-L-PN model uses the information contained in the
structure of the net, together with the specifications of the controlled flexible pro-
duction system for selecting the transition to be fired, e.g., occurrence-mode, from
a set of them in structural conflict situation.

The following paragraph gives an explanation of behavioral conflicts.

Let M’ be the reachable marking from M after firing of transition t;, and M"” be the
reachable marking from M after firing of transition t. Then, there is a behavioral conflict
between t; and t,, if, and only if:

Both transitions model the work from two resources which compete for exclusive per-
mission to use a shared resource [32].

For better understanding of this kind of conflict, the case depicted in Fig. 41 serves an
example. Between transition t1 (occurrence-modes (<mp,ry,p2,<®>>) and
(<mgp,ry,p3,<®>>)) and transition t5, there is a behavioral conflict with regard to the
use of robot 1 (a shared resource for loading and unloading operations) and with re-
gard to the next part to be loaded on the work position of the human operator.

The information contained in the structure of the H-L-PN is not sufficient for solving a
behavioral conflict. It can only be solved by taking into consideration the actual state
of the flexible production system and the production specifications generated by the
scheduling and planning components situated at the upper level of the hierarchical
DECS, depicted in Fig. 39.

According to the definitions mentioned above, this new point of view of the H-L-PN-
based models is now emphasized. The question is, indeed, to select the model entities
relevant to the problems, detected in the coordination control level, e.g., transitions or
occurrence-modes, and then to classify such entities in order to formalize the treatment
of the problems. If the controlled flexible production system is observed under the point
of view of the problems related with allocation of shared resources and material-flow
specifications, the H-L-PN-based model of it has to be also observed from this point
of view. This leads to the following classification of the set of transitions T of the net:

e sets of transitions or occurrence-modes in structural conflict

e sets of transitions or occurrence-modes in behavioral conflict.
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Without regarding the marking of the net, the set of transitions T can be split up into
the following subsets: 7K, i« ;1.m and T*

T=[C) TK,}UT',where

=1

TK;, : set of transitions in structural confiict

T' : set of transitions with no structural conflict

Fig. 44: First Classification of Transitions in a H-L-PN Model

The transitions ¢ and ¢ are in structural conflict, if { € TK and t, e TK; (see Fig. 44).
If two or more transitions from a subset TK; are enabled, only one of them can be fired.

f transiti i ior nfli

After the token-game and solution of all the structural conflicts, the set of transitions T
of the Petri Net can be partitioned into two new subsets, T,, and Tynen (se€ Fig. 45).
>

T=Ten U Turen » Where

T.. : set of enabled transitions
Tunen Twen - S€t Of Nnot enabled transitions

T [U rs,] U T, .where
i=1

TS, : subset of enabled transitions, that modgl i
behavioral conflicts, e.g., physical restrictions

T. : subset of all enabled transitions, that are r_rot in
behavioral conflict and therefore can be fired

Fig. 45: Subsets of Transitions showing a Behavioral Conflict

5.2.2 Conlflicts Treatment and Structure of a Real-Time Decision Support System

In the following, the control functions allocated in the H-L-PN-based coordination model
are partitioned in order to distinguish the execution functions, i.e., communication be-
tween coordination and logic control as presented in chapter 4, from the decision-mak-
ing functions, i.e., communication between coordination and real-time decision support
system for solving conflicts.

The approach proposed here builds a new H-L-PN-based representation of the produc-
tion shop, but, considering the same H-L-PN-based coordination model. The result is

a problem-oriented interpretation of the H-L-PN-based model of the flexible production
system.

As the H-L-PN-based coordination model describes the part routes and the machine
allocation, the real-time interpretation of the net evolution can be considered as an
observer spying on the actual state of the system and checking for the occurrence of
some problems, modeled as conflict among transitions or their occurrence-modes,
during the design phase of the coordination controller.
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First step: all possible structural conflicts in the H-L-PN-based coordination model of
a flexible production cell that are relevant for the job-release and job-flow control have
to be captured. The result is a planar array of problems modeled as structural conflicts.
Each structural conflict is represented by a set TK;, i« [1.m) at the coordination level and
mapped into a module allocated in the RTDSS, called /ocal controller (LC). This means
that the RTDSS posses, among other structures, a planar array of modules or "agents”,
each of them with the intelligence for solving a structural conflict occurring at the coor-
dination level. Each agent provides the capability to affect a particular decision making
function related with the solution of the structural conflict for which it is responsible.

The real-time decision of each local controller has to be consistent with schedule, ex-
plicit or implicit schedule, which can be given either by time intervals associated with
the tasks (earliest starting time — latest starting time), by an ordering (task A has to
precede task B), by a set of rules (execute the shortest task first) or by a combination
of the three /102/.

First result: one and only one occurrence-mode or transition of a set TK;, ie (1.m; will
be selected by each local controller to be enabled to fire in the coordination model.

Nevertheless, the real-time decision of a local controller also have to be consistent with
the physical constraints of the production environment. H-L-PN as presented in chapter
3 and 4 describe the sequential constraints which have to be respected at any time,
in any situation. These are, among others, part routes and mutual exclusions during
resource utilization, and these specifications, which are modeled by means of the set
of above defined behavioral conflicts. The last means that some transitions selected to
be fired by a local controllers can be found in behavioral conflict with other occurrence-
mode or transition selected to be fired by other local controller.

One possible way of solving the structural conflicts and the behavioral conflicts to-
gether is to provide the RTDSS with intelligence for handling complicated behaviors
(conflict situations) via a federation of co-operating agents / local controllers. Each con-
troller needs only to communicate with its immediate surroundings, but, at the same
time, coordinates with neighboring controllers to produce larger-scale decision making
control functions. Neighboring controllers can combine their data and information to
obtain an overview beyond the scope of each of the group. According to Fig. 45 each
federation is mapped into another type of agent in the RTDSS, called complex control-
ler (CC), which is responsible for coordinating the decision functions of the members
in a hierarchical manner (see Fig. 46). Hence, the need arises of an overall perspective
of a behavioral conflict, in which all related local controllers contribute to solve it. The
solution of such a conflict will be found taking into consideration the knowledge about
the actual state of the flexible production system, and the assistance of the upper level
of the DECS, i.e., planning component with production objectives.

As result, for any given time instant, a complex controller situated in the RTDSS sends
to the H-L-PN coordination controller information about the occurrence-modes and/or
transition (one and only one per CC) that can be effectively fired according to its deci-
sion. This means, with this decision, an occurrence-mode or transition will be effectively
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enabled to fire in the coordination model and the corresponding control enforcement
will be issued from the last to the components of the production environment.

The conflict resolution in the RTDSS is performed by means of a protocol, see as
example /39/. The structure of such protocol is based on an exchange of requests and
responses among the local and complex controllers, involved in the topology, and be-
tween the controllers and a scheduler component. Additionally, an information ex-
change among the local controllers is necessary to support the decision-making pro-
cess of a single local controller.

Based on the concepts mentioned above, conflict handling mechanism is performed
in a hierarchical form. By this means, the structural conflicts are always solved first.
Afterwards, the behavioral conflicts which emerge from the first step are treated.

structural
conflicts
TK;4 TKz TK; TKm
LC4 LCa| ™ LG | LCm
/ //
— = HEH0 - sRaEan
behavioral
conflicts
TS TS, TSy
CCy CCz2| ™ Jcc,
\ RTDSS
o -— e eass eoass e IS TS T
Coordination and
Y Logic Control

Firing of the transitions or occurrence-modes

Remark:
m=me Information about a set of transitions or occurrence-modes
——& Information about one transition or occurrence-mode
~—~« Communication between controllers
LC Local controller
CC Complex controller

Fig. 46: Hierarchical Treatment of Conflicts

The topology of co-operating agents metaphor is regarded as being representative of
the interactions and sharing of expertise that takes place when conflict situations are
generated at the production environment level.

In keeping with good decision making processes each agent, i.e., local and complex
controllers, would exhibit a high degree of cohesion. The community of agents would
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be closely coupled, according to the topology, necessary for solving the different con-
flict cases. Each agent would therefore consists of a local knowledge base, a deductive
capability and a communication mechanism that would enable it to interact with other
controllers in the topology and with the H-L-PN coordination model. Consequently each
knowledge base would be smaller and the model which operates upon this corpus of
knowledge would not require the same degree of sophistication.

As shown above, the community of agents would collectively work toward the solution
of problems reported from the coordination control system providing mutual assis-
tance. In concept, if communicating with other local controllers, with relatively simple
control laws developed for each local controller, complicated behaviors can be solved.
Solutions of complex decision-making processes will emerge, which are useful in order
to achieve the best possible coordinated operation.

5.2.3 Communication between H-L-PN-Based Coordination System and RTDSS

In order to make good decisions in real-time operation conditions, it is necessary that

the dispatching functions performed by the RTDSS are aided by knowledge of the
shop floor status.

This means that a mechanism has to be created to adjust and modify the decision
making processes of the RTDSS based on the information coming from the coordina-
tor, as well as to adjust and modify the evolution of the H-L-PN-based coordination
control system, based on the solution of conflicts issued from the RTDSS. More impor-
tant is that this mechanism makes the dispatching and coordination functions a closed-
loop real-time process. The control enforcement issued to the lowest level, i.e., to the
process interface, will be a function of the actual state of the system, e.g., condition of
each resource, amount of material already processed, etc. (H-L-PN marking and se-
quence of fired transitions) and of the decisions coming from the RTDSS, as illustrated
in Fig. 39.

After having detected the problems of allocation of shared resources and material-flow
specifications, two main steps have to be developed:

e identification of transitions and/or occurrence-modes of transitions which model the
identified problems

e definition of a RTDSS structure, i.e., topology of agents, dedicated to solve struc-
tural and behavioral conflicts reported from the coordination system

and two communication channels have to be defined and implemented between the
components of the proposed closed-loop control architecture.

Below, a topology for solving the conflicts generated during the evolution of the sample
cell of Fig. 17 is presented in Fig. 47a. Fig. 47b, ¢ and d depict three possible conflict
situations with the corresponding solution, according to the production-path specifica-
tions shown on the left side of the picture.




5 Real-Time Decision Level of a Hierarchical Control Architecture.... 117
- 1,<mq,p1>
<My, pi>
1LE t5,<my, p1> TKz
<m|>+<m2 p1 5,<mz, pi> 25
<m, LT
WP conflicts
t1
-
— — AIDSS
H loading or part of type 2
. unloading or type 3
teoe - - -
Q‘\ <n> behavioral
<P1>+<px>+<p3> conflicts
________ () solution of the conflicts s
= /_\\
<p> LC4 \\__/ LCo
<p2> .
<p3> E\ OJ e t1,<my, p;i> TS ti,<mp, p2>
<py> <> M
<pz2> @ D '
<p3> | <Ma> CCq
(b) * t1,<mg, P2>
B B B s
<p1> X |~ LG \_//I LEZ.!
SEa” - t1,<m > TS
<pz> | D ' 1:P1
O
<py> <r>
<pz> E D '
<P3> <my> CCy
(c) t1,<my,p1>
<py> LCy LCo
<p2> 15,<mg, pi> TS i >
<pa> D 1 ti,<mz, P3

<pi>
<p2>
<p3>

(d)

<mp> CCy

<my>

Y

¥ 5.<mz po>

Fig. 47: RTDSS Topology for solving Conflicts in a Sample Flexible Production Cell
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Coordination Control System —> RTDSS

It is important that appropriate information related with the behavior of the production
environment is issued evenly and efficiently to the RTDSS, without long pauses be-
tween or during messages, because of the real-time nature of the necessary decision-
making processes.

Taking into consideration the architecture depicted in Fig. 39, the RTDSS functions are
aided by the knowledge of the coordination system allocated in the monitoring compo-
nent:

e Quantities and locations of all the work-in-progress (WIP) items.

e The places of the H-L-PN-based coordination model which are marked and their
colored markings.

e Global information about allocated resources and work-plans actually developed in
the production environment; local information about current and old states of the
resources involved in a material-flow or allocation problem; sequence of fired transi-
tions and reached markings.

e Where are the problems to be solved? Which transitions or occurrence-modes are
in conflict?

After having identified the set of transitions or occurrence-modes in conflict, and having
defined the set of agents responsible for solving such conflicts and the topology of the
whole RTDSS, a new attribute of the transitions and occurrence-modes of the H-L-PN-
based coordination model has to be defined.

Definition 51: For some t € T in the coordination model and for each G&;(t) (definition
36) which occurrence-colors are in conflict with the occurrence-colors of another G&(t),
a Boolean variable called variable controller (vc) must be defined. This variable maps
the transitions or occurrence-modes in conflict situations with the corresponding agent,
i.e., local controller and/or complex controller, situated in the RTDSS.

Corollary: Every time when a problem occurs in the production environment and the
transitions or occurrence-modes that are in conflict in the H-L-PN-based coordination
model are marking-enabled, the variable controller of each of them becomes the value
true and the associated controller in the RTDSS is informed and requested for a deci-
sion (see Fig. 49).

RTDSS —> Coordination Controller

According to the extensions of the guards associated with some transitions or occur-
rence-modes that are issued in chapter 4, the form of the Dispatcher-Guard [DF(t)]

presented in definition 40, allows performing a mapping of the topology of the RTDSS
into the coordination model (see Fig. 49).

5.2.4 Assistance ofthe Upper Levels of the DECS Hierarchy to the RTDSS Operation

After having the updated representation of the workshop in real-time, the RTDSS has
to compare the set of possible operations (because the required resources are free in
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the shop), i.e., set of marking-enabled transitions or occurrence-modes reported from
?he coordination controller, with the set of scheduled operations which have to be done
in order to make the right decisions in real-time. These real-time decisions have to be
consistent with the schedule (explicit or implicit schedule) which can be given either by
time intervals associated with the operations (earliest starting time — latest starting
time), by an ordering (operation 1 has to precede operation 2), by a set of rules
(execute the shortest operation first) or by a combination of these three /102/, while
also guaranteeing that the production specifications are met.

As illustrated in Fig. 39, a continuous communication between the RTDSS and the
other components of the DECS responsible for solving decision making problems re-
lated with production objectives of a flexible production cell, i.e., scheduling and plan-
ning components, has to be performed. Nevertheless, within a flexible production cell
problems can occur which are influencing not only the cell but also the behavior of the
entire flexible production system. In order to solve such problems, alternative material-
flow specifications, modified work-plans, or the use of additional capacities, have t0 be
introduced in the production environment.

As described above, the RTDSS is able to make decisions exclusively concerning the
behavior of a cell. Therefore, is necessary to have an additional component for monitor-
ing and scheduling within the hierarchical schema shown in Fig. 1. This new compo-
nent will be activated for solving problems which cannot be cleared up by the RTDSS,
because of their nature related with medium and long time decision functions.

Fig. 48 depicts an extended structure of the decision levels of the hierarchical DECS
presented in /42/. The approach proposed in this paper is based on a decision making
process developed by the RTDSS assisted by a new component called "simulation-
based monitoring” /94/, /99].

. Real-Time : it Simulation-Based Monitoring
Decision Support System simulated decisions =

performance request

for aid

Monitoring and
Visualization

real-time real-time
information information

' model- and feature-based information
orders request for problem's solution

Fig. 48: RTDSS aided by a Simulation-based Monitoring Component

The main task of this new component is to offer a functionality that assists monitoring
and decision making processes, parallel to the real time production system. It has to
support the DECS in decision making processes not only with regard to a local opti-
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mum on the level of the flexible production cells, but also with regard to the global
optimum on the level of the production system. Therefore, the component has to: visu-
alize user-oriented deviations and disturbances concerning planned processes, inform
simultaneously about the consequences, and make suggestions to the RTDSS about
possible reactions.

Basically, the processing and solution of a conflict can be summarized as follows: if the
coordination controller detects problems, which have to be solved in the flexible pro-
duction cell, they are reported to both, the RTDSS and the monitoring-based simulation
component. The characteristics of the conflict, together with model-based and feature-
based information related to the problem, are collected by the real-time monitoring
structure (described in chapter 3) and sent to the RTDSS and to the simulation-based
monitoring system. After processing the problems, i.e., conflicts, the solution is sent
back from the RTDSS to the H-L-PN-based controller.

Fig. 49a and 49D illustrate two different results of a decision process that the RTDSS
can make according to two production specifications generated by the scheduling and
planning components of the hierarchical DECS, and to the actual state of the system
reported by the H-L-PN-based coordination controller.

In both cases, the RTDSS, i.e., the complex controller CC;, receives the information
about the structural and behavioral conflicts detected between the transitions t1 and t5
and their corresponding marking-enabled occurrence-modes. The variable ve=CC;
associated with the occurrence-modes of transitions t7 and t5 becomes the value 1.

In Fig. 49a, according to the scheduled production specifications shown on the left side
of the picture, the next operation must be "robot 1 loads the work position of the hu-
man operator with a part type 3". This means, that only the dispatching function of
transition t7 becomes the value 1 for the occurrence-mode <ms,p3>, i.e.,

[DF(t1)]=[bdvsz A G&;(t1)]=1 and all the other marking enabled occurrence-modes are
unabled to fire.

In Fig. 49b, according to the scheduled production specifications shown on the left side
of the picture, the next operation must be "robot 1 unloads work position of robot 2".
This means that only the dispatching function of transition t5 becomes the value 1 for

the occurrence-mode <my,p;>, i.e., [DF(t5)]=[bdvs; A G&;(t5)]=1 and all the other
marking enabled occurrence-modes are unabled to fire.

5.3 Incorporation of Error Detection / Error Recovery Strategies in the
Control Logic

A system designed to perform a manufacturing process unattended, even when errors
occur, must have a way of recovering from errors. Recovery comes after detecting the
error and determining what it is (diagnosis). This section focuses on the detection step
of the error recovery process in flexible production cells. It also formalizes an algorithm
for constructing "error detection mechanisms”, and proposes communication struc-
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tures among control, monitoring and diagnosis components when the logic control
structure of the DECS is based on a H-L-PN specification.

Marking enabled
: O | O H 5 occurrence-modes:
: : G&z(ﬁ) A G&a(n)
: ' G&4(t5)

<my,pi>
X

<p1>+<p2>+<pz>
X L L} [DE(t5)]=[bdv; A G&;(t5)] V [bdva A G&x(t5)] V [bavs A G&3(t5)]
[DF(t1)]=[bdv; A G&;(t1)] V [bdvp A G&(t1)] V [bdvs A G&3(t1)]

2,
Q

Marking of the H-L-PN-based coordination controller

Opera‘tior:ns ks
E <my> processes a part type 3 S

“ @ <my> processes a part type 2|
% <m,> processes a part type 1
’ <ry> unloads <my>
a ' N O <ry> unloads <my>
g O <ry> loads <my>
<ry> loads <my>

scheduled production specification , . —t

{ T
0 5 10 15 Time
(a) The RTDSS makes the decision: t1 fires with respect to the occurrence-mode <mp,r1,p3, <*>>
[DF(t1)]=[0 A G&;(t1)] v [0 A G&(t1)] V [1 A G&3(t1)]=[1 A G&3(t1)]
[DF(15)]=[0 A G&4(t5)] v [0 A G&(t5)] V [0 A G&3(t5)]=0

Operations

‘ . '

| <m,> processes a part type 3}

<my> processes a part type 2

<my> processes a part type 1

0 <ry> unloads <my>

<ry> unloads <my>

S e e i

<ry> loads <my>

<ry> loads <my>
scheduled production specification ! !

PR 10 Time
(b) The RTDSS makes the decision: t5 fires with respect to the occurrence-mode <my,ry,py, <¢>>
[DF(15)]=[1 A G&; (15)] v [0 A G&;(t5)] V [0 A G&3(t5)]=[1 A G&(15)]
[DF(t1)]=[0 A G&;(t1)] v [0 A G&2(t1)] V [0 A G&3(t1)]=[0]

Fig. 49: Decision-Making Processes for solving Structural and Behavioral Conflicts
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5.3.1 Reliability of Flexible Production Systems
Extension of Monitoring Functions of the DECS

High reliability of flexible production systems, together with a proper production plan,
is very important factor in gaining a good position on the market /107/. Generally
speaking, there are two ways of achieving high reliability of a FPS. One is to learn very
well the system and its working conditions, use the safe parameters of operation and
perform the proper maintenance and preventive repairs in planed time intervals. Such
attitude is possible in mass production of relatively simple products, but in the change-
able conditions of FPS, the only way of increasing reliability is to use sensors which
measure the chosen features of the system and well-defined models of the system, i.e.,
resources, layout and manufacturing processes. The production is in every case pre-
ceded by the system and process planning, during which the sequence of operations
and their parameters are established and incorporated to the models of the FPS and
its DECS with the aim of achieving high quality. There are usually differences between
parameters of the models considered during the planning phase and the actual condi-
tions of the production environment (real-time operation conditions). Any quality affec-
tive difference is treated in this work as a disturbance and the source of such situation
is labeled here as error.

Classification of Errors

Errors can be classified and divided in three main families /68/: execution failures, ex-
ternal exceptions and system faults. Execution failures are deviations of the state of the
production environment from the expected state, detected during the execution of a
task k;, for example, collision, obstruction, part slippage from the gripper, part missing
at some expected location, etc. External exceptions are abnormal occurrences in the
flexible production cell which may cause execution failures. Misplaced parts, defective
parts, and unexpected objects obstructing machine operations for instance, may cause
such type of failures. System faults are abnormal occurrences in the hardware and
software of the resources and in communication /8/.

Generally speaking, an error occurs when the flexible production cell reaches any state
not defined in the DECS. An error is latent as long as it is not detected and does not
cause a failure. A fault is the cause of an error, a sequence of errors or a failure. A fault
is latent as long as it has not caused any errors, but exists in the resource as a potential
error cause. In short, the difference between a failure, an error and a fault is determined
by considering the service and the resource /13/.

Note: The terms error and failure are used interchangeably in this work.

5.3.2 Augmentation of the H-L-PN-Based Control Structures
for Incorporation of Error Detection Functions

In implemented flexible production systems, an inordinate amount, up to 90%, of the
control coding effort is dedicated to exception handling or automatic error recovery. At
present, most of this coding effort occurs at the design stage. Engineers attempt to
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anticipate common errors and write the control logic to handle them and to allow the
system to automatically recover if feasible /117/.

By assuming that the H-L-PN-based control logic has been designed without coding
errors and the results of the validation phase were optimal, the results of this section
allows augmenting, i.e., patching, the control logic while minimizing the possibility of
introducing new errors. This will provide for a coding strategy, where only the most
common errors are accounted for, at system design stage and the remainder are
treated as they occur while the system is running. The main idea is to perform the
augmentation of a H-L-PN-based control logic for error detection and error recovery
while preserving the behavioral properties of the logic to avoid deadlocks, buffer over-
flow, liveness and other specifications of the system. If the augmentation in the control
logic is made as prescribed here then the properties are guaranteed without further
analysis. Thus, the goal here is to show how an existing H-L-PN-based logic controller
can be augmented for the purpose of error detection and error recovery and still pre-
serve the desirable properties guaranteed in its initial design, as presented in chapters
3 and 4.

The objectives can be summarized as follows: 1) to propose the concept of a H-L-PN-
based DECS with the capacity for automatic error detection and recovery and investi-
gate its design in the context of flexible production cells; 2) to study basic augmenta-
tion methods for different types of error recovery; and 3) to prove that the properties
of the discrete-event control system are guaranteed when the H-L-PN augmentation
methods are applied.

Error Detection

In general, error detection depends on the system'’s capability and the available in-
formation. That is, error determination is specified as far as the system is capable. The
monitoring functions performed naturally by the H-L-PN evolution is permanently ac-
quiring monitoring indices from the raw sensor data and the static and dynamic attrib-
utes of the model, i.e., feature- and model-based monitoring, as presented in chapter
4. If the H-L-PN-based model of the logic controller is augmented to perform "error
detection functions”, the token-game of the net performs naturally a comparison be-
tween these monitoring indices and the specified nominal behavior of the production
environment /8/. If a deviation of the expected behavior is detected, an error detection
structure is setting into operation.

Depending on the available feature (sensorial) and model-based information contained
in the H-L-PN controller, a more or less detailed detection, classification and explana-
tion for an error may be performed. This leads to different approaches for the incorpo-
ration of these three basic functions to the hierarchical DECS structure presented in this
work.

Basic Concepts of H-L-PN-Based Error Detection

Two detection modes are naturally implemented in the H-L-PN-based controller: event
monitoring checks preconditions before the execution and goal achievement after the
execution of the task. Alternatively, continuos monitoring can be performed checking
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sensory conditions during the execution of a task /8/. According to these hypotheses,
a task error can basically be detected through three kinds of symptoms:

e violation of the starting date for a scheduled operation;
e lack of signal from the process indicating the end of an operation;
e reception of a signal indicating a deviation of the process behavior.

Let K={ky,k>,...,k;,....kn } De the set of tasks to be controlled by a H-L-PN-based DECS.
Associated with each task k; a time can be defined as ta; € R*, which represents the
maximum duration of it (TAb={tAty,Thp,...,TH,,...,.TH, }). There exists a function tem-
porization TEM: K — T, whereby the value of each wa; € TAL is fixed by production
specifications.

The idea here is to incorporate to the original DECS structure an extended monitoring
function that is used to detect non-nominal feedback in the system during the execution
of each task k.

Taking into consideration the logic control architecture described in chapter 4, two
main approaches to indicating of the occurrence of an error are proposed in the follow-
ing. One is based on a combination of the information from the process interface of
the flexible production cell, with the use of watchdog timers introduced in the structure
of the H-L-PN controller /117/. The other one is based only on new information incorpo-
rated to the static structure and the evolution rule of the H-L-PN.

Augmentation of the H-L-PN-Based Logic Controller

As discussed in chapters 3 and 4, the approach to developing a H-L-PN-based logic
controller is to use places of sub-nets to model technical actions, i.e., tasks k. The
presence of a token in a place of a sub-net indicates the activity of a task, e.g., robot
picks a part, lift moves a pallet, etc. The transitions of sub-nets are synchronized with
external and instantaneous events, e.g., the start and completion of tasks execution.

In order to process abnormal states that appear during the execution of the system and
detect errors using the H-L-PN control structure, a new function and a constant are
attached to some transitions of the H-L-PN (sub-net) in the control logic structure. Also,
a new basic color domain with the corresponding color function, new guards and new
functionalities can be added to the models proposed in chapter 3 and 4.

In implementing a H-L-PN-based controller for a real-time system, time requirements
also need to be satisfied. Therefore, it is necessary to introduce the time variable to the
H-L-PN.

v:T—R*

Vse NI {0} = 15:T— R*/5=818y
E=[e4,€3,...,6),....6n]

These are explained as follows:

e The elapse and safety-time: 4(t) and (), V4 e T
1si(t;) is the maximum amount of time, a marking-enabled transition remains without
firing; ts;(t) is calculated taken into account the maximum duration of a modeled
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task k to be controlled, i.e., T4y, and a safety factor s e N | {0} to guarantee a
reliable completion of it. %(4) > 1si(f) implies that an error may have occurred in
the system (related with the task k) so that a mechanism of detection has to be
activated.

® The standard color domain "Error (E)” which elements are all possible errors that
can be modeled in the sub-nets with the corresponding mechanism of detection.
The structure of the universal color domain, presented in chapter 2, has to be aug-
mented with this basic color domain, and new standard functions will be defined.

Definition 52: The set E is now considered as a new 2, i.e., a basic (standard)_color
domain, and its elements "color tones” are the possible errors that can occur in the
production environment.

Definition 63: The universal color domain Q* of the net will be the cartesian product of
all basic color domains defined during the modeling phase, as stated in chapter 3, and
also the new Q;=E.

That is 9:: Mj «1n) 9 = x Q x ..x Y1) x 2 then

Vo' e Q"= w'= <W1,02,...,0(n-1),Wn>= <W1,W02,...,8,Wn >

Without loss of generality, in this work it is considered that Q(,,,1)=E-

Definition 54: Under normal operation conditions, the marking of the H-L-PN-based
control system (sub-nets) contains as penultimate element the color tone €. It means
that no error occurred during the evolution of the system until the current state.

Definition 55: Associated with the new extension of the universal color domain, a new
set of functions can be defined, which will be used for constructing error detection
structures in the sub-nets of the H-L-PN-based logic controllers. Examples of these
functions are:

1) The projection function

proj(n—1): Q*—E

2) The successor function

succ((n=1)):2"=Q%  <w=(wy,..wp) = (©f,O(n-1) DX,0n)>
3) The predecessor function

pred((n—1)):2°=Q%  <w=(w1,...,0p) = (©1,.s@n—1) OXyeesWn) >

4) It is also possible to build a composition of the above defined color functions. The
following example shows a composition that allows to extract the characteristic of a
modeled error from the whole structure of a token.

a) If succ((n—1),):2"—Q" and proj(n—1): Q"—E then

proj(n—1).succ((n—1),):R2 "—E=>proj(n—1).succ((n— 1),):2": <w=(wy,...,0n) > (6 DX) >
Fig. 50 depicts a general augmentation of the H-L-PN-based logic controller to detect

the presence of an error in the controlled flexible production system using a method
to detect the absence of sensor signals.

If a place pa in a sub-net models the task k;, a first kind of error detection structure
related with this task is illustrated in Fig. 50. Timed transition is associated to the model
so that the place pa is also pre-condition of the last. A new pair of places connected
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with the timed transitions represent together with the transition the error detection
mechanism for the considered task.

detection transition

........

: start of task [G(ta)]
monitor place of pe colored token - — e -\
projin—1) [TG(C)]  <wy,w,...05...0.<®>> 1 tagkkis +
~ e - . :
pe A <W1,02,...,0....80, <> > performed : '
<(D1.UJ2.----wlv---e(0+D'<.>> ........ : s :
tc nilkss

nlace for detection of error g;

end of task [G(tb)] B

Fig. 50: Attributes of a H-L-PN Controller augmented for Error Detection

The greatest implication of this structure is that the properties of the sub-net are main-
tained, because both new places constitute a new place-flow of the sub-net and the
transition generates a new transition-flow which models a new control logic sequence
related with the detection of the error. In the schema of Fig. 50, following remarks can
be done:

e proj(n—1).m(pe)+succ((n—1);).m(~ pe)=proj(n—1).my(pe)+succ((n— 1);).mo(~ pe)

=<g>

The :narking of the places pe and ™~ pe are in mutual exclusion relation with regard
to the token <g;>. This means that the place ~ pe remains marked during normal
operation conditions of the production environment. As soon as the error g is de-
tected, this places will be unmarked and place p, receives the marking
<wy,wy,...,6,,<®>> which contains all the information that is necessary for per-
forming the first steps of a diagnosis function.

e [tatb 0] is a canonical transition-flow corresponding to the logic control sequence
for normal operation conditions related to the task k;

® [ta O tc] is a canonical transition-flow corresponding to the logic control sequence
for operation conditions with error g related to the task K.

Definition 56: Associated with the standard guard of the new transition, a timer, i.e.,
watchdog, is defined. The value of this timer is fixed on ts;. For the case depicted in
Fig. 50, as soon as the place pa receives a token, the transition tc becomes marking-
enabled condition, but it can not be fired because of its Timer-Guard [TG(tc)].

At the same time, two synchronized events have to be started: the task k is performed

in the real world and the watchdog of the transition begins with a countdown from the
value ts; to 0.

Definition 57: Under normal operation conditions, i.e., without errors at the production
level, the colored token resides in a place until the action it represents is completed,
that is during the time t©#;. When the last event occurs, i.e., the completion of the task,
the transition of the normal logic sequence, which pre-condition is the marked place,
fires (atomic firing). The last event causes that the transition of the error detection struc-
ture is marking disabled.
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Since the firing of a transition in a H-L-PN-based logic controller is synchronized with
the production environment by means of sensor signals, the absence of at least one
of such signals interrupts the normal token-game of the net. This leads also to the
synchronized interruption of the next processes that could be started according to the
control logic sequence and the initialization of a error detection and error recovery
logic.

Note: The role of the watchdog is to make sure that the place of the original logic
sequence does not remain marked for a duration exceeding that specified for the mod-
eled task.

After a time 1s;, if the tasks k; can not be completed because of an error, failure, break-
down, etc. in the production environment, the production process related with this task
has to be stopped and the control logic updated. The transition with the watchdog
becomes effectively enabled and fires. This event initializes a new control logic SR
quence, i.e., the normal control logic is desactived and a error detection sequence is
concurrently started.

Fig. 51 shows an alternative structure for performing error detection. In this .case, a
simplified date structure is considered for the tokens to be used in the detection part
of the controller.

start of task

colored token
from Q*

f1

Fig. 51: Structure of a H-L-PN Controller augmented for Error Detection

Another possible mechanism for detecting errors in the production environment com-
bines a non-timed H-L-PN-based detection structure with the identification of features
performed in the production environment and reported in real-time by means of senso-
rial information.

Definition 58: If the modeled detection mechanism reports an error €; corresponding to
the task k;, the marking of the H-L-PN model has to be locally actualized and the penul-
timate position of the involved colored token becomes the color tone g; (see Fig. 52).
That is succ((n—1)) <w=(wy,...,€0,wp) =  (@1,...,.e0Dj,wp)>.

Since a sub-net represents the control logic related with a set of tasks that are neces-
sary for performing an operation in the flexible production system (see chapter 4), for
each task k a similar error detection structure as the presented above can be defined.
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detection transition start of task

monitor place of pe \ coloredtoken = | H1'i%eges alsalERILISHD - BRSNS - 0\
pro](n—-1) tc <wy,wy,...,W0,...,0,<0> <y ,mz,...,mj.....90,<.>> [SG(td)]: ;
“pe ‘ P
........ task k is Identification *
performed ‘ H

place for detection of error g;

Fig. 52: Error Detection combining Sensor Signals and Attributes of a H-L-PN

\J
end of task [eg € G(tb)]

tb

Below, the proposal is to incorporate a pair of places to each sub-net and a detection
transition for each task to be monitored. Fig. 53 depicts an example of two tasks to be
performed sequentially and monitored with timed transitions as presented in definitions
56 and 57.

detection transition of error €

<W{,02,0en, Wiy, (BF ([— 1)), <0>> ta

proj(n—1) start of task K, === [G(ta)] |

' » : colored token T
: " proj(n—1) (g ATG(te)] <wy,wp,..,w;,..,80, <0>>] f1 task K s NS
monitor e D
place 2 <wy,Wy,..,0,..,80, <8>> performed : I':
of pe <m1,wz....,mi....,e(0+n,< >? : ot
~pe 90511) . vk
e(+1 ‘ detection transition of error e, 4 TN S v

end of task k; L

pe ; start of task kg4 1) (G(tb)] o
colored token e
oroj(n=1) [eg+1) ATG(th)] <01,02,..,j,..,80, <®>>1  task kjyqis *
<04,02,..,1;,..,80, < 0> > performed 3 : f
] L]
o ' S
<(.01.wz.....(L)i.....B(0+u+1)),<0>> if : i:

place for detection of the errors (REARA € 1

8g-1). & and €g+1) end of task k. 1) === (i)} -

"3

Fig. 53: Error Detection in a Sub-net of a H-L-PN Controller

5.3.3 Augmentation of the DECS Structure for Incorporation of Diagnosis
and Error Recovery as Supervisory Functions

The detection mechanism proposed in the last section can be summarized as follows:
when the flexible production system works normally, the sequences represented in the
original H-L-PN-based control logic will be executed. Otherwise, as an error occurs, the
detection structure associated to each task to be monitored will be started. But moni-
toring (detection) is only the first step of a supervisory activity for error recovery /107/.
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After detection of an error, the DECS system should perform a diagnosis function and
then influence the operation of the flexible production system eliminating or at least
diminishing losses which may occur. The last means that four steps can be distin-
guished during the error processing: detection, diagnosis, decision (the selection of an
optimal error recovery strategy) and recovery.

e The diagnosis function will firstly check if there really is an error (error confirmation)
and update the internal model of the DECS. Then, this function will try to classify
and explain the error. At each execution level, different levels of explanation for a
detected error may be generated, depending on the amount of available informa-
tion /7/, for example, a gross diagnostic can be "transport_1 fail”. A more detailed
diagnostic could be "transport_1 fail due to motor failure”.

® According to the classification made in /117/ and /43/, depending on where the
correct control logic sequence will restart after an error has been detected, classi-
fied and an error recovery strategy has ben selected, it is possible to distinguish
three possible automatic error recovery strategies:

Backward recovery
Forward recovery, and

Redo recovery

An Approach for Implementing Diagnosis and Error Recovery Functions

The implementation of these functions can be done in two different forms: the first one
leads to integrated monitoring where all these functions are implemented in a single
software module /96/, the other one corresponds to separated modules where diagno-
sis, decision and recovery are gathered in different components of the DECS, sepa-
rated from the H-L-PN-based control and monitoring systems.

The structure defined for the H-L-PN-based controller cannot express heuristic mecha-
nisms for diagnosis and decisions. In order to keep the advantages of the normal
control sequences of a flexible production system by means of H-L-PN, and to deal
with diagnosis and decisions, it is necessary to combine the information of the pro-
cesses contained in the nets with artificial intelligence techniques /13/, /71/, /75/. An
architecture for an intelligent automatic H-L-PN-based error detection and and auto-
matic and/or manual error recovery system that work together with the first one in a
synchronized form is shown in Fig. 39.

Remark: It must be pointed out that for the diagnosis rules the marking of the nets are
important facts. Consequently, a great advantage of the proposed H-L-PN-based DECS
is to allow an easy and clear access to "states” (control system states or manufacturing
system states) and "actions” (operations and tasks in the production environment or
control enforcement located at the DECS level).

In order to process the information contained in the H-L-PN-based error detection
structure and to incorporate diagnosis and error recovery functions to the DECS, a
similar construction as the proposed for the RTDSS is now presented.

L
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As a matter of fact, a diagnosis component has to be built, which is composed of a
set of agents, i.e., error controllers, each of which is responsible for the treatment of
one of the detected errors that have been modeled in the H-L-PN logic controller.

Let EC={ecy,ecy,....€C;,....eCn} be the set of agents, i.e., controllers, dedicated to pro-
cess the errors of the set E defined in section 5.3.2,

Fig. 54 depicts a possible extension of the H-L-PN-based error detection structure for
performing "error classification” and "communication” with the upper level of the
DECS. Two new transition are incorporated for building the communication between
the H-L-PN-based control logic component and the diagnosis component of the DECS.

The transition tyag models the communication between H-L-PN-based logic controller
and diagnosis component and the transition ¢, models the communication in the op-
posite way.

: detection transition of error 8
Diagnosis component / Error controller EC4 * proj(n—1).succ((n—1 )j-1)

proj(n=1)

[Gltrec)]=[e(-1) vV ejVe(q)] proj(n—1) [ejA TG(tc)]

trec
proj(n—1)
_I— —————— 1

Communication vc=EC;

proj(n—1).succ((n—=1)) || o

detection transition of error e(j4 )

&“ _p_roﬁn_—u___"___ Watchdo
(Gltgiag)l=[eg-1) V & V €(j+1)] ( pe proj(n—1) [90” AR

proj(n—1).succ((n— 1)j+1)

place for detection of the errors
€(-1). & and eg4.q)

Fig. 54: Classification of Errors and Communication with a Diagnosis Component

The transitions fyag and tec: possess as many occurrence-modes as errors can be
detected by the place pe. The agent or agents responsible for performing the diagno-
sis functions will be defined as attributes of a variable controller associated with these
transitions, similar as explained in the case of the RTDSS.

Remark: The exchange of signals and information between the H-L-PN-based logic
control system and the diagnosis component is performed by using the same "conflict

oriented” approach proposed in section 5.2.3 for solving problems related, for exam-
ple, with the allocation of shared resources.

As proposed in Fig. 39, the diagnosis and error recovery component of the DECS
receives the information about the detected errors plus all the other information con-
tained in the monitoring component. The array of agents, i.e., error controllers, situated
in it, processes the information and selects and implements a recovery strategy (solu-
tion of the conflict). It is possible for the application of a full automatic recovery to use
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some of the techniques above referenced and influence the decisions made by the
RTDSS, or the intervention of the human operator for directly actuating at the real pro-
duction system (Note: A detailed discussion about the last processes is beyond the
scope of this work).

5.4 Summary

The analysis of the H-L-PN-based coordination control structures developed in chapter
3 revealed the existence of conflicts, which refer, among others, to problems generated
during the flexible production system evolution, e.g., the use of shared resources and
competence relationships between components. Furthermore, the proposed control
structures do not allow these conflicts to be solved at this control level.

Taking into consideration the hierarchical discrete-event control architecture proposed
in chapter 2, this chapter aims at the design of a real-time decision support system
(RTDSS) and the interface between it and the underlying H-L-PN-based coordination
and logic control systems.

The approach comprises the modularization of the coordination model that corre-
sponds to the layout of the modelled flexible production system. A basic RTDSS struc-
ture composed of a set of agents was proposed, after dividing the real production
system into modules. It takes into account a hierarchical treatment and solution of
conflicts at the coordination level.

New augmentation of of the control structures were presented in this chapter to per-
form error detection and to allow the incorporation of error recovery strategies to the
developed controllers. This was possible after assuming that the given H-L-PN-basgfi
hierarchical DECS was designed while preserving the structural and behavioral specifi-
cations of the FPS.

The complexity of the proposed real-time decision level is justified in terms of user
requirements, as it allows maximal system operation flexibility according to the speci-
fied work-plans. Additionally, the new introduced error detection structures anq .the
augmentation of the H-L-PN-based control systems, with error recovery functionalities,
guarantee a high DECS reliability and the integration of the proposed control compo-
nents into the proposed control hierarchy.
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Implementation of H-L-PN-Based Control Structures of
Flexible Production Systems into a PC-Platform

There are many requirements, which have to be taked into account for implementing
flexible production systems FPS /5/, /91/, /108/, /110/, /117/. The most important are:

unified management and control from overall production scheduling to on-line con-
trol of the smallest production unit;

a high degree of expandability and maintainability in system hardware and soft-
ware;

a high level of system reliability and fault tolerance:

minimum engineering man-power and short-term man-power for software system
development and enhancement; and

minimum system costs realized through the adoption of suitable implementation
tools.

The H-L-PN-based formal synthesis of a discrete-event control system of FPS/FPC,
such as described in chapter 3 and 4, allows meeting the above addressed require-

ments. It offers many important advantages over other currently reported design ap-
proaches:

The structure of the DECS and the control logic embedded in it are correct by

construction, because they are generated in accordance with structural and behav-
ioral specifications of the controlled FPS.

The functionalities of the hierarchical obtained control structure are maximally per-
missive within the considered specifications. These functionalities are, per construc-
tion, the same as the one of the real FPS/FPC.

Control logics are easily comprehended and can be modified independently of
other logics, facilitating control software enhancement and upgrades.

The mapping between control sequencing information and the control code is
straightforward and so the sequencing information is easy to see by just looking
at the control code described in the H-L-PN structure. It also leaves the control

sequencing information in an understandable and therefore more easily maintained
and modified form.

As processes or FPS/FPC requirements change, H-L-PN-based descriptions can be
easily updated in an interactive mode or in the higher ranked system. Furthermore,
the H-L-PN-based controllers are able to handle the addition of equipment and are
relative easy transportable to other workstations.

Since the functionalities of the H-L-PN-based DECS and of the real production environ-
ment are the same, the H-L-PN-based DECS structure is defined now as a virtual FPS/
FPC. That is, a virtual production environment composed of software/mechatronic
components embedded in the structure of the net.
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An entity software/mechatronic component is an extension of a software component
concept /76/, /117/. Such a component has to include specifications of:

e components of the real production environment, e.g., machines, robots, tran§pon
systems, which are considered from the point of view of their mechanical specifica-
tions (number of transport places, different states of a robot, possible movement
directions of a lift, layout specifications and port structures);

® components of the real production environment, e.g., machines, robots, tranqurt
systems, which are considered from the point of view of their electrical/electronic
specifications (number of velocity-phases of a motor, number and type of sensor
signals that can be handled by an identification component).

The point is, the production engineer has to consider the existence of two production
worlds: a virtual production environment, constituted by the H-L-PN-based DECS gnd
the real production environment, which evolves in a synchronized manner with the first
one. As main result, both production worlds are provided as one loosely coupled sys-
tem, are gradually integrated and tightened into a total flexible production system,.r.e.,
the virtual and the real production environments are setting into operation as a unique
production entity.

As described in chapter 2, the development of a hierarchical H-L-PN-based DECS for
FPS is divided into three main steps:

1) Modeling and validation of the real production environment (structural apd behav-
ioral specifications to be enforced), development of the software/mechatronic compo
nents;

2) Synthesis of the virtual production environment, which has to feed to a computer
program, implementation of the software/mechatronic components;

3) The implementation of the virtual production environment. It has to be codedLln ii
computer-based platform (PC-based implementation) or in a Programmable Log
Controller-based platform (PLC-based implementation).

In order to perform the last step and considering both possible implementation plat-
forms addressed above, this chapter proposes 3 approaches which have been |mpI9-
mented in a PC-based platform and set into operation at the FAPS laboratory. Here will
be described computer aided design and manufacturing tools (CAD—CAM) to support
a successful application of H-L-PN to industrial automation, and reasons for their wide
acceptance by application engineers.

The set of developed and implemented user-friendly CAD tools ease the l{sage of the
sophisticated H-L-PN theory for many industrial applications in manufacturl.ng syst.ems
design and implementation, and help the generating of the virtual production environ-
ment defined above.

The H-L-PN-based engineering tool includes the following important components:
e powerful and user-friendly H-L-PN graphic editor;

e behavior analyzer via reachability graph generation, invariant method and perfor-
mance evaluation via timed simulation;
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e H-L-PN controller;
e 2-D-based monitoring/visualization system;

e interfaces necessary for binding the H-L-PN-based controller with the other compo-
nents of a hierarchical DECS, and with a 3-D kinematic simulation tool for test func-
tions.

The major tasks in the development and implementation of each component are out-
lined as follows.

6.1 Graphic Editor of H-L-PN for Control Purposes

A well-designed graphical user interface (GUI) is the key to successful application of
the H-L-PN-based engineering tool. The development of a graphic editor gives a base
for the construction of the control framework of the FPS. The result is universality of the
system framework that offers a possibility of connecting the planing, realization and
commission fields without changing of model, in this case the usual programming and
control tasks are not necessary anymore.

Based on the theoretical concepts presented and proved in chapters 3, 4 and 5, two

CAD-packages have been developed for the edition of H-L-PN-based control structures
(see Fig. 55).

"f_'{_l Application Catalog for cpndhb 5

‘ Application  View Help

Editor & Animator for CPN.
Petri—Net-Editor

\
Editor of Colored Petri Nets Editor of Synchronized Petri Nets
for Control Purposes for Control Purposes

Fig. 55: Implemented Editors of Petri Nets for Control Purposes

Fig. 56 depicts a view of "Petri-Net-Editor (PNED)”, a first version of a CAD-tool that was
developed for the edition of synchronized Petri nets. With this editor it is possible to
generate Petri-Net-based logic control structures of simple FPS/FPC. The tokens of the
edited nets are those of standard Petri Nets (i.e., uncolored tokens without any informa-
tion about modeled components of the FPS).
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The edition of logic control structures of complex FPS and the small set of functionali-
ties offered by PNED is necessary, and therefore this first editor was enhanced to allow
the edition of H-L-PN, e.g., Colored Petri Nets. The new version is "Control-Colored-
Petri-Nets (CCPetNet)”, which capabilities complete those of the first version (see Fig.

57).
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Without loss of generality, in the rest of this section will be described the functionalities
of CCPetNet.

How can be edited a "H-L-PN for Control Purposes”?

The edition of a net begins with the definition of all attributes of the net, e.g., basic color
domains, functions, guards, modelled mechatronic components. This definition phase
follows the editing process of the net structure. This task is performed by using the
elements provided by the menu of objects supplied by the editor, and by associating
the defined attributes with the corresponding elements of the net. As shown in Fig. 57,
there are two levels of edition, the first one corresponds to the coordination control
level defined in chapter 3, and the second one to the logic control levels presented in
chapter 4 (defined by means of Sub-H-L-PN) .

Defining of Basic-, Complex- Defining of Nameof Listeof Liste of Control Signals
and Universal-Color Domains Functions a Net Sensors  generated by CCPetNet

RN\\\// /

\ CCPetNet: cpnd /7

Menu Window
Attributes List

~~ Defining of
a Sub-Net
[IT=> Defining of
' Guards

Menu of Objects

Edition of Places

Edition of
Transitions and
Firing-Modes

Edition of Arcs

Comments about
an edited Net

Fig. 57: Description of Functionalities of CCPetNet

The editor is integrated in the development environment through an interface module.
This module has to provide the interfaces for the control structure of a H-L-PN-based
controller, interfaces for an analyzer of nets, e.g., a simulator of the token-game, and
also for a data base.

The models produced with the CCPetNet are to be converted in a data base with the
help of a data base management system (DBMS). This practically means, the models
are stored in the data base and from this place they can be loaded and/or also deleted.

The interface between the CCPetNet and the DBMS must develop a corresponding
data base language. The designer has to be able to store the edited model and load
it again. For this purpose, a data base is used as a component of the development
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environment /77/. The complete net description can be stored in this data base. The
interface module possesses the needed methods that write a structure in the data
base, read it, or delete it.

The interfaces are ASCII files. The module generates these files and stores the edited
model as a special format. After a net is edited, the ASCII export file is generated by
the editor. It contains all information about basic and universal colour domains, places,
transitions with their corresponding attributes (e.g., firing-modes, guards) and sub-
nets, and the connectivity of the model, i.e., arc with their corresponding functions. This
means that other components of the framework can read the files and process the
model.

Editor Hardware/Software Requirements

The CCPetNet-Editor works with HP 700 Workstations under X-Windows, the base is
operating system UNIX HP-UX Release 9-01. The integrated development environment
is composed of Windows4GL (/77/) together with the INGRES data base (cpn-db). The
editor has to have an access into the file CCPetNetPICS, where the pictures of all the
buttons in GIF format are. Another file, IMAGES, must also be defined in order 1o re-
ceive the pictures for the net information and the sub-net symbols.

6.2 Behavior Analyzer of H-L-PN

The methodology proposed for the development and implementation of H-L-PN-based
DECS offers the possibility to analyze a H-L-PN specification before the actual imple-
mentation. The engineering-tool presented here includes a set of analysis methods thgt
allow gain confidence on the H-L-PN-based description, as well as detect certain
wrongly described specifications, such as incompatibilities and omission errors. Some
of the offered functionalities are:

® Syntactic and semantic checking of the ASCII-file generated by the editor.
® Analysis of the H-L-PN itself for structural and behavioral - qualitative - properties.

® Analysis of the interpretation of the nets, i.e., validation of specifications of the mod-
elled structures.

® Quantitative analysis of the H-L-PN for calculating performance indexes.of the mod-
elled systems. This is performed using discrete-simulation of a temporized form of
the nets (see section 2.5.3).

Comparison of the sorts of Petri Nets used in this work with standard Petri nets descrip-
tions reported currently in the world, results the following main conclusion:

The syntactical and semantical structure of the H-L-PN-based descriptions used here
allows performing all the above named analysis methods with commercial CAD sys-
tems. These systems relieve the designers of DECS of tedious validation work under
some conditions in the H-L-PN theory. These are actually very difficult to proof by using
computer-based automatic verification procedures. Some of the world-known CAD
tools that can be incorporated to this approach are: GreatSPN (/16/), PETSY (/58)),

R
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Pascell (/22/), Design-CPN /60/, /86/. The fact is that each of these analysis tools can
be joined with CCPetNet for performing some of the analysis methods addressed
above and aiding in model design and debugging. Fig. 58 depicts a modeling-analysis
approach combining the H-L-PN-based descriptions generated by CCPetNet and the
analysis capabilities offered by Pascell (Synchronized and Temporized Petri nets) (/22/)

and by Design-CPN (Colored Petri Nets) /86/.
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Fig. 58: Integration of H-L-PN Edition and Analysis for Optimizing Control Logic




|

6 Implementation of H-L-PN-Based Control Structure of FPS.... 139

The proposal of this approach is that the H-L-PN-based description of a FPS and its
control logic will be setting into operation - as DECS - if and only if the modeling-analy-
sis approach results an optimal H-L-PN-based control structure from the point of view
of the required control specifications.

6.3 Implementation of the H-L-PN Controller into a PC-Platform

Taking into consideration a classification of implementation forms for Petri Net-based
real-time controllers presented in /102/, the proposal here is to implement a centralized
concurrent control architecture, in a PC-based platform, as depicted in Fig. 59.
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It is composed of:

e many specific tasks and each of them associated with one firing-mode or transition
of a H-L-PN,

e a control kernel that evolves according to the enabling/firing rules of H-L-PN de-
scribed in chapters 2 and 4 and operates on an explicit representation of the net
marking. This means that the kernel performs the "token-player” on the net model
and in a synchronized form, exchange information and control signals, associated
with the firing of transitions and/or firing-modes, with the controlled production envi-
ronment or a 3-D kinematic simulation model of it.

6.3.1 Structure of the Controller and H-L-PN Execution Algorithm

The validated H-L-PN specification generated during the modeling-validation phase and
issued as control logic structure by the editor is loaded into a H-L-PN interpreter called
"token-player”.

The basic idea is that a H-L-PN model and the "software/mechatronic components”
embedded in it are transformed into, for example, a C** program, which is imple-
mented in a PC-based platform. The ASClII-file generated by the H-L-PN editor is trans-
lated into a data structure interpreted in real-time by the token-player.

Note: The operation of the H-L-PN interpreter is very similar to one of an inference
engine in a rule-based system /96/. The inference machine manages the application of
the rules while the token-player fires the transitions and/or firing-modes of the H-L-PN
specification. Nevertheless, the flow of colored tokens through the net is regulated by
the dynamic properties of it and also by the interaction of the net with the controlled
production environment and the other components of the DECS.

The execution algorithm performs two types of control logic:

e Constraint combinational control
Several enabling conditions of transitions and/or firing-modes in the H-L-PN coor-
dination controller are checked and the firing optimum is selected. This kind of
control needs the communication between H-L-PN interpreter and the RTDSS in the
form described in chapter 5. Every time when a conflict has to be solved by the
control kernel, the H-L-PN-based controller needs the assistance of the RTDSS. The
last can make a decision if it receives the request from the interpreter and also all

the information related to the problem, which is contained on the monitoring com-
ponent.

e Sequence control

It performs the synchronization and exclusion of tasks associated with transitions
and/or firing-modes in each sub-net, e.g., control on tools in a workstation, error
detection, etc.

In order to successfully control the evolution of a production environment, the H-L-PN
interpreter, as a principal part of the virtual production environment defined in this
chapter, recognizes a set of commands and functions, which are invoked to interpret
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the H-L-PN model described in the ASCII-file generated by CCPetNet and can also be
used:

e to interactively execute the H-L-PN model in real-time conditions,

e to communicate with input-, output-modules of the process interface to initiate ap-
propriate operations through the controlled production environment,

e to display information about some attributes of the net, e.g., marking of places,
enabling-condition of firing-modes of transitions, etc., and

e to call routines to handle communications between control kernel and the other
components of the hierarchical DECS, i.e., monitoring and visualization, RTDSS,
etc.

Three kinds of H-L-PN interpreters were developed and implemented within this re-
search work.

Two of them were implemented in the object oriented language C** and called PetNef
(interpreter of Synchronized Petri Nets) and CCPetNet (interpreter of Colored Petri
Nets) respectively. They are MFC applications, i.e., they are based on the Objects of
the Microsoft Foundation Classes - version 2.5, and contain the following facilities:

1) an import function for processing an ASCII-File generated by the editors PNED and
CCPetNet respectively.

2) the PetNet-Application (CCPetNet-Application) which allows a Synchronized Petri Ngt
(Colored Petri Net) data to be directly fed into the interpreter. Fig. 60 depicts the main
features of both named Applications.

The third implemented H-L-PN-based controller is described below.

6.3.2 Integration of a H-L-PN-Based Controller in a Motion-Oriented
Simulation Platform

An interpreter of self-adjusting Petri nets is integrated into a motion-oriented simulation
platform, i.e., 3-D kinematic simulation, which models a real production environment.
Fig. 61 depicts the main structure of the implemented tool. It offers possibilities for

® the realization of a modeling/simulation approach that can be used for off-line de-
velopment, test and optimization of a flexible production system, e.g., a robot
placement system, a flexible assembly cell /10/, /41/, /84/;

e building a discrete-event controller of flexible production systems, which H-L-PN-
based structure and functionalities complete the logic control facilities contained in
the 3-D kinematic platform; and

e offering an integrated development package that can be used by expertise of both
fields (discrete-event and motion-oriented systems) and also can be implemented
at industrial level, because of its user-friendly process-visualization and operation
facilities.
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Fig. 61: Implemented H-L-PN Controller in a Motion-Oriented Simulation Platform

Development-, Analysis- and Control-Functionalities of the Implemented Tool

After both systems have been integrated, a flexible production system designer has
two platforms, which act as an unique entity. Both systems, i.e., Discrete—Eyent and
Motion-Oriented, exchange messages which allow them to evolve synchronized (see
Fig. 62). An off-line simulation-based "verification” of the behavior of the whole structure
is then performed. Depending on the results of this off-line simulation, the optimization
of control parameters and corrections of errors produced during the development
phase, e.g., collisions of devices, identification of restricting areas, are issued in order
to get a reliable control logic and safe behavior of the manufacturing system. In this
context, the 3-D-based model of the production system replaces the real manufacturing
environment.

Only after the control logic embedded in the discrete-event controller and also in the
motion-oriented model is tested intensively, it should be transferred to the hardware
components of the real flexible production system. In this case, there are two main
possibilities for implementing the discrete-event control system:
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e The validated control logic embedded in the H-L-PN-based DECS component,
which is coded in the 3-D platform, is directly transferred from the last into the real
world by means of "off-line programming”. This operation is identified as Off-Line
Control/Programming.

e The validated H-L-PN-based control logic coded in the motion-oriented platform is
set into an on-line operation with the real production environment. The result is an
On-Line Hybrid Supervision approach.

DECS

(acknow. of a function)

l

Sensor-Guard

[ |

Actuator-Guard

(call a function)

Fig. 62: Exchange of Information between DECS and Motion-Oriented Simulation

Off-Line Control

For the purposes of this work, a program was produced, with ability to translate the
H-L-PN-based DEC-program embedded in the motion-oriented simulation platform,
e.g., graphic Simulation Language (GSL) (/87/), into another one compatible with the

operation language of the real system. Fig. 63 summarizes the main features of the
implemented approach.

On-Line Hybrid Supervision

The integrated self-adjusting, synchronized Petri Net and the 3-D kinematic simulation
components act as a virtual production system which evolves in a synchronized man-

ner with the real production environment. Fig. 64 shows the main features of the imple-
mented approach.
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6.4 Implementation of a H-L-PN-Based Monitoring/Visualization

System using 2-D Visualization Tools

High-Level Petri Net models used in this work are suitable not only for the control of
FPS but also for the visualization, and because of their graphical and mathematical

character also useful in the field of process monitoring (chapter 4).
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Fig. 64: Integration of H-L-PN and 3-D Kinematic Simulation for On-Line Control

As a matter of fact, the structure and dynamic properties of the H-L-PN-based control
logic remain equal, as described in chapter 4, but the evolution of the net will be now
performed by taking into consideration the signal, and information, exchange between
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H-L-PN-based DECS, motion-oriented simulation component and the real production
environment (see Fig. 64(a)).

Fig. 64b shows a view of an experimental setup, i.e., hybrid supervisory system, qf a
robot placement system (RPS), as it was implemented at the Institute of Manufacturing
Automation and Production Systems, University Erlangen-Nirnberg.

The presentation of structure and state of the controlled processes is a very important
monitoring/supervisory function.

Currently implemented visualization tools use flow-picture presentation (German:
FlieBbilddarstellung), which structure and presentation capabilities can be compared
with these of the High-Level Petri Nets /3/, /15/, /49/, /53/. For this reason, the H.'L—PN-
based controller presented in this work can be extended for the purposes of the imple-
mentation of a visualization/monitoring component of a hierarchical DECS.

The extension of the functionalities of the H-L-PN-based controller for these goals offers
not only the possibility to perform the animation of the nets dynamic, i.e., token-game,
but also to generate graphic presentations of the modelled processes in a user-friendly
manner, e.g., flow-diagrams or abstract presentations of the hardware components of
a FPS such as robots, transport systems.

6.4.1 Development of a Human-Oriented Monitoring/Visualization System

The premise of this section is that visualization is a critical issue for the implementation
of the H-L-PN-based DECS at industrial level. It supports consciously and purposefully
human interaction with a supervised flexible production system. The ljumgn operqtor
plays a big role in FPS, specially from the point of view of monitoring/visualization
functions /65/. For this reason, the challenge is to effectively design human-system
interaction, here: the H-L-PN-based DECS and an operator, situated at the work.sh-op
level, in a way that enhance human performance and compensate for system limita-
tions.

Putting together H-L-PN-based DECS like one proposed here, and currently‘e.njﬂgl”g
industrial monitoring/visualization tools, provides operators, increases ﬂemblmy N
widens a range of choice in almost all aspects of FPS operation. Main idea here is e
the sophisticated interface and computer technologies associated with t_h S ndustial
tools give the operators of FPS many choices how to configure and use d'SP'aVS' con-
trols, etc. together with the potentialities offered by a H-L-PN-based DECS structure like
the one presented in this work.

For the purposes of the implementation of the monitoring/visualization component of
the DECS in a FPS-operator-friendly manner, new presentation methods were observed
and formed with taking into consideration ergonomic concepts in the context of new
technology within the machine-human-interface theory (MHI).

Two main sources of information were considered in order to perform the monitoring/vi-
sualization of the processes, states of hardware components, mechanical and electrical
parameters of a FPS, etc:
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e model-based statical and dynamical parameters of the H-L-PN-based controller,
e.g., a transition that models an operation is enabled to fire;

e feature-based statical parameters located at the process interface, e.g., sensor/ac-
tuator signals.

In order to implement the visualization component of the DECS it is necessary to define
all the variables related to hardware components of the flexible production system, and
also of the H-L-PN-based controller, related with the information addressed above. All
these variables are recognized in this work as a set of process variables X. It is also
necessary to implement an interface between the monitored production processes and
the visualization processes. The interface is responsible for a reliable data transmission
and the mapping from processes variables to visualization variables (set of internal
variables Y).

This concept can be represented as a mathematical function f, which is performed
automatically by the monitoring system.

X (process variables) - f — Y (internal variables)

In order to help ground this concept, Fig. 65 depicts the Boolean functions and trees
of process variables which are necessary for building the visualization variables "pallet
movement from buffer 1 to buffer 2" and "pallet movement from buffer 4 to buffer 2" in
a sector of a sample flexible assembly cell, controlled and monitored with the proposed
H-L-PN-based approach (Note: More details about this example can be found in /39/).

Elements of the set of internal variable Y have to be connected with different graphic
objects in order to perform a dynamic monitoring/visualization of all controlled pro-
cesses. The generation of the graphic objects and the codification of all information is
performed in an object oriented form, according to the norm /29/. Furthermore, the
flow-picture-based monitoring/visualization is converted into textual information in order
to make the work of the human operator easier, according to the norm /114/.

6.4.2 Combining H-L-PN-Based Information and Technical Signals for Monitoring/
Visualization Tasks

For the operators of a FPS is the information, coming from H-L-PN-based controller and
from process interface, very difficult to understand, because of its form (without struc-
ture). For this reason, the processing of this information and its representation in an
operator-friendly manner are the main tasks to be performed for building of a monitor-
ing/visualization component for the usage on industrial level.

The aim of Fig. 66 is to explain the above named concept.

The implemented monitoring/visualization component consists of three presentation
levels: a) the level of hardware components, b) logic control level and ¢) general view
level.
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Fig. 65: Algorithm for converting of Process Variables into Visualization Variables
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The lowest level is the level of hardware components, where all the current states of
resources of the system are visualized, considering only the information provided by
the process interface.
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Fig. 67: Processing and Interpretation of Information within each Monitoring-Level
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Expert

The next level is the logic control level. Flow-picture presentation is performed here
according to the information coming from the lowest level plus the information of the
second level, which are the product of the relationship between the state of the H-L-PN-
based controller and the material-flow and work-plans specifications. Extension of this
level allows viewing the H-L-PN-based logic control structure contained in the sub-nets
of the coordination control system that corresponds to each component. The informa-
tion obtained at this level is processed according to the algorithm depicted in Fig. 65
in order to generate new processes variables which are input for the next higher level.

The highest level, general view level, combines and processes the information from the
logic control level and this from the level of hardware components.

In order to perform the monitoring of all production processes as well as components
of the FPS, the visualization concept has to allow the generation of user-friendly graphic
presentation of all this information in each level. All process variables generated at each
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of the lower levels have to be converted with the help of Boolean-Algebra into new
information, i.e., visualization variables. This results in an ergonomical flow-picture pre-
sentation of the whole production process at the highest level.

There is also a hierarchical information processing and visualization, within each of the
above named levels, which leads to a processing-tree like the one shown in Fig. 68.
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Fig. 68: Hierarchical Processing of Monitoring- and Visualization-Information
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6.4.3 Implemented Monitoring/Visualization Component

The software structure of the monitoring/visualization system is implemented in Win-
dows 95/NT 4.0 platform and it is composed of the following main components:

e Graphic system (graphic presentation and dynamization)

e Data manager (management of internal- and process-variables)
® Data base

e Extra function-modules (alarm, measurement processes, etc.)

e Edition tool

e Communication-modules (communication among monitoring component, H-L-PN-
based controller and process interface of the controlled FPS). Fig. 69 depicts the
configuration of the communication-modules implemented into the developed mon-
itoring/visualization system.

PCfor — B

Monitoring/Visualization |- : 1
>=’:) L‘j g
£ i ol

M ONE R ST T e

change of mark?r‘xg change of sensor/
and colors T T actuator signals
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H-L-PN-Communication Canal  Process Interface-Communication Canal
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H-L-PN Controller
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i_H-L-PN Controller I | Proces Inudm-l

Fig. 69: Implemented Communication-Modules for the Monitoring Component

Two different implementations of the monitoring/visualization component were per-
formed.

1) Development within the H-L-PN-based controller of a monitoring component with
utilities that have to be formed as software modules taking into consideration the theory
presented in chapters 4 and 5.

In order to visualize the dynamic behavior of the net, an information-flow between the
H-L-PN and an animation component can be also realized through the data base cou-
pling referenced in section 6.1. The current H-L-PN condition-data saved in the data
base are put at animator’s disposal by the editor.

The implementation of such a visualization component was performed for research
purposes, within the editor PNED.
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The results of this implementation have shown that this presentation is not suitable for
industrial purposes, because it is not operator-friendly. The problem is that an appropri-
ate trade-off between functionality and understanding of the monitoring/visualization
component needs to be made. The more compact a H-L-PN, the more difficult it is for
an operator to visualize its statical and dynamical properties related with the controlled
processes. Only experts in the field of H-L-PN theory do not have difficulties interpreting
the animation.

This situation motivated the necessary development of an industrial-oriented monitor-
ing component, which acts as an interface between the H-L-PN-based virtual produc-
tion environment, the controlled real production environment and the operators.

2) In order to fill the above mentioned gaps, the animation of the H-L-PN model is
integrated as a monitoring function into a 2-D commercial monitoring/visualization sys-
tem (German: Bedienungs- & Beobachtungswerkzeug). In this case, the edited H-L-PN
is loaded into a visualization tool and the animation, i.e., token-game, is synchronized
with other monitoring functions.

Considering market analysis and the specifications of the implemented H-L-PN-based
controller, different commercial tools for implementing this second alternative could be
used: Modicon FactoryLink, AEG Schneider Aut. GmbH; WinCC, Siemens AG.

(Note: The referenced solutions do not exclude other alternatives) (/100/, /103/, /1 05/).

6.5 Summary

Since the primary concern of the thesis is the practical applicability of the theoretically
research results, the H-L-PN-based formal specifications of the DECS-components
presented in chapters 3, 4 and 5 were un this chapter implemented. The following
forms of setting an H-L-PN-based DECS into operation were describe:

e implementation of an H-L-PN interpreter in a PC-based platform able to run in a
synchronized manner with a controlled and monitored flexible production system;

® integration of the H-L-PN interpreter in a 3-D kinematic platform and generation of
control code for FPS in an off-line manner;

® integration of the H-L-PN interpreter in a 3-D kinematic platform and synchronization
of both systems with a real production environment in an on-line manner.

Finally, the development and implementation of a H-L-PN-based monitoring/visualiza-
tion component using a 2-D industrial visualization tool was described, and the results
of its implementation at industrial level were shown with examples.




7 Automatic Generation of PLC Code from a H-L-PN-Based
Specification of Control Logic

In this chapter, an engineering tool (hardware-platform-independent) is pursued. This
was developed to automatically convert a validated H-L-PN-based control logic specifi-
cation, issued by the graphical editor described in chapter 6, into control logic code
according to the international standard IEC 1131-3 — language Structured Text (ST) —
and to set it into operation on an industrial Programmable Logic Controller (PLC).

7.1 Engineering Tool for Generating of IEC 1131 Control Logic Code

Fig. 70 depicts the main structure of the engineering tool, which components are de-

scribed in the following sections.
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Fig. 70: Engineering Tool to Generate PLC-Code from a H-L-PN-based Specification




156 7 Automatic Generation of PLC Code from a H-L-PN-Based....

7.1.1 Why the International Standard IEC 1131

As stated in chapter 2, one of the main weaknesses of currently implemented DECS
are based not on the hardware of the flexible production systems but on common
description methods, as well as programming and implementation techniques for the
components of the control structure. These differ, among others, in terms of modelling
and analysis/validation power, agility, flexibility, clarity.

Moreover, industrial flexible production environments incorporate control equipment
from various vendors which collaborate via hardware/software solutions. In order to
support the efficient setup and reconfiguration of the manufacturing process as a
whole, the interpretability and reusability of hardware and software components has to
be guaranteed.

Existing software and hardware solutions in the application area of logic controllers
often lack portability. Products from different vendors often have different communica-
tion interfaces and programming environments.

This problem resulted an international standard on PLCs, the IEC 1131. It is the first
standard in the field of PLC-programming techniques to receive international as well as
industrial acceptance /106/. It also covers the standardization of the communication,
the programming model and the programming languages, thus making control soft-
ware portable. As a positive side effect, training costs may also be reduced signifi-
cantly.

The IEC 1131 consists of five parts and two technical reports. Part one contains the
definition of the basic notations used in the standard. In addition, it describes the basic
functionality of a PLC system. Part two fixes the equipment requirements for both, PLCs
and peripheral devices. This includes electrical, mechanical, functional and documenta-
tion requirements. Also, conformance tests are defined. Part three defines the program-
ming model for PLCs and four different programming languages. These are two textual
languages, Instruction List (IL) and Structured Text (ST), and two graphical languages,
Ladder Diagram (LD) and Function Block Diagram (FBD). To structure larger software
projects, a graphical language, the Sequential Function Chart (SFC), is provided. In
part four of the standard, user guidelines for the installation and error detection are
presented. The communication among PLCs themselves, and between PLCs and other
peripheral devices is standardized in part five /56/, /85/.

Since the programming language ST and the programming model described in the
standard play a mayor role in this work, they are here summarized.

Structured Text is a high level block structured language with a syntax that resembles
PASCAL (see Fig. 2). Therefore complex statements and algorithms can be expressed
in a very compact way. User-specific data types, including (multi-element) structures
and arrays, can be derived from a number of predefined standard data types including
BOOL, INT, WORD and DWORD. There are also specific predefined data types for the
management of digital and analogue values, times-of-day, dates and durations.
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Operators Language-Elements Type of Data

0 FOR BOOL,EDGE

+,—,*,/,MOD,** EXIT SINT,INT,DINTLINT,

NOT,AND,OR, CASE USINT,UINT,UDINT,

XOR IF ULINT,REAL,LREAL,

<,>,<>>=, = TIME,DATE,BYTE,

== WHILE WORD,TIME,OF DAY,
REPEAT DATE AND TIME,
RETURN WORD,LWORD,

Fig. 71: Main Characteristics of the STIEC 1131 Programming Language

A contribution to modern PLC-based programming languages is the possibility for dec-
laration of variable. From the point of view of the used PLC-device, the physical ad-
dress of the variables is either determined at compile-time or defined when loading the
program into the controller. It is also possible to address inputs and outputs directly
referring to the physical address. The language has also support for iteration loops
such as REPEAT UNTIL, conditional execution using IF-THEN-ELSE or CASE
constructs. Several mathematical functions such as SQRT() and SIN() are predefined.

The programming model defined in the IEC 1131 consists of configurations, resources,
tasks, programs, functions and function blocks. Roughly spoken, the configuration de-
scribes a PLC system as a whole. It defines the applications the PLC runs and the data
to be exchanged with other systems. A configuration may contain resources each of
which describes a processor module in the PLC system. Resources itself contain one
or more programs which may be executed according to tasks. Both, cyclic- and priority-
based execution are possible. What is colloquial referred to a PLC program is com-
posed of a unit called program which invokes functions and function blocks to perform
the control task. To be able to call a function block, this has to be declared in the first
phase of the project and then an instance of it has to be created. The process of
instantiation is similar to the declaration of a simple variable. An identifier is assigned
to the instance which is used for calling it. Two instances of the same function block
have different data areas but, in general, share the same code area. Globally used
instances of function blocks and global variables are defined in the unit "program”.

7.1.2 The Programming-Model of the Proposed Approach

Despite of all the advantages of the IEC 1131, it remains to be said, that the covered
programming languages lack in the opportunity to validate the logic control software.
Only simulation can be used in order to check both the fulfilment of the specification
and the correctness of the software beforehand. The ability to verify, validate and docu-
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ment the control logic before implementation has not developed as rapidly as the con-
trol capability of PLC systems.

The programmer (knowing or not) tends to perform the simulation for what a logic
control system is expected without considering unforeseen events. Failure to check all
states of the system could result in PLC logic that operates incorrectly, causing costly
implementation delays and perhaps damage or injury.

For this reason, this work proposes to combine the functionalities offered by the stan-
dard IEC 1131 with the modeling and analysis/validation capabilities of the H-L-PN de-
scribed in the last chapters.

Fig. 72 shows the programming-model, evolving from this chapter. In a first phase, the
H-L-PN model is derived from the industrial process to be controlled (see chapter 3).
The model is then stepwise refined applying the techniques stated in chapter 4.

modelling

modelling

automatic code
generation

process to be
controlled

process level cell control level

Fig. 72: Programming-Model used in this Work

The implementation phase is automated by a compiler generating a PLC program from
the H-L-PN model. If necessary, the modeler portions the H-L-PN model and distributes
it among different PLCs. Each part is then compiled separately. The communication
and synchronization among the PLCs is subject to the modeler at the moment. IEC
1131 programming tools available on the market, like /78/, /79/, /80/, /81/, /82/, are
used to create functions and function blocks that are dynamically invoked within ac-
tions. They also assist in setting up the run time environment. Principally, two modelling
techniques can be distinguished when implementing actions:

e Simple actions, i.e., the setting of actuator values, are expressed by the terms pro-
vided by the grammar (see section 7.2.1).

e Functions or function blocks are used to perform complex actions. Then, the mod-
eler has to write code in one of the IEC 1131 languages, which is invoked from the
H-L-PN model. The code is called within a scan cycle of the PLC or simulator, and
has to be short.
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7.2 Generation of ST-IEC 1131 Control Code from a
H-L-PN-Based Description of the Control Logic

7.2.1 Introducing Grammar for H-L-PN

First, a grammar is developed to be able to store H-L-PN models in g textual form
generated by the H-L-PN editor CCPetNet. A grammar for H-L-PNs, with no added
functionality for process control, has to provide constructs for defining colors, places,
transitions, guards, pre- and post-functions and the initial marking. As an examplg of
the developed grammar, the syntax for some elements of a H-L-PN-based description
is defined in the following paragraphs.

Definition of Color Domains

The definition of the color domains is divided in the definition of the basic qolqr do-
mains (respectively basic colors) and the definition of the complex colors. Similar to
a variable name in a programming language, a color name is assigned to each cqlor.
A basic color is defined by its name and an integer interval to express the possible
color tones. The integer interval starts from number one to a user-defined upper bound.
In Fig. 73(a) there are three different basic color domains specified, namely A B a'jd
C. Complex colors are the Cartesian product of basic colors. They are defined by its
name and the enumeration of the corresponding basic colors (see Fig. 73(b)).

define_basic_colors define_transitions 5
color A = integer (1 to 10] transition tl from p3 to3p iyt (R
color B = integer [1 to 13] transitipn.tZ from (p2.,p3.,P
color C = integer [1 to 30] end_transitions

end_colors

(@) (d)

define_complex_colors define_marking
color D = product A * B place pl = (1) + (2)
color E = product A * C place p2 = (4,2) * 2,2)
color F = product B * C place p3 = (1,2,1) + 4* (2,2,
end_complex_colors place p4 = discolored (5)
end_marking
(®) (e)
define_places
place pl = color A, maxtoken 2
place p2 = color E, maxtoken 20
place p3 = color universal, maxtoken 20
place p4 = color discolored, maxtoken 13
place p5 = color universal, maxtoken 22
end_places

(c)

Fig. 73: (a) Definition of Basic Colors, (b) Definition of Complex Colors, (c) Definition
o/ Transitions, (d) Definition of Places, (e) Definition of the Initial Marking

Definition of Places and Transitions

A place is defined by its name, the associated color set and an integer value indicating
how many tokens of the specified color set can at most reside in the place. The last
value is needed for the implementation of the compiler. It is obtained from the validation
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phase of the H-L-PN-based control system (see chapter 3). The universal color type is
specified by the keyword universal, the discolored color by the keyword discolored. An
example is given in Fig. 73(c).

A transition is defined by its name followed by the list of input places and the list of
output places (see Fig. 73(d)).

Definition of the Initial Marking

The initial marking of a place is defined in the form of a list, with the list elements
separated by the symbol "+". Each list element describes a set of tokens that reside
in the place. A single token is described by an expression enclosed in curved brackets
like "(1)" or ”(1,2,1)". The values enclosed in the brackets define the color tones of the
token corresponding to the color set of the place. Place p17 in Fig. 73(e) has the color
set A which is a basic color. The expression "(8)" describes therefore a token of the
color set A with color tone "8".

To define multiple occurrences of one token, a multiplicative factor can be added as
a prefix. An example is given with the initialization expression "4*(2,2,2)" of place p3
denoting four occurrences of the token "(2,2,2)". Places which color set is the discol-
ored color are initialized with the keyword discolored, followed by the number of discol-
ored tokens (see place p4).

Definition of Functions

Fig. 74 illustrates how the arc functions (i.e., pre- and post-function) are defined. There-

fore, Fig. 74(a) gives a graphical representation of the transitions of Fig. 73(d). The
example shown in Fig. 74(b) refers to this graph.

Multiple occurrences of an element of the multi-set are defined by an integer value
followed by the prefix symbol "*”. The elements of the multi-set are denoted in the form

of a list separated by the symbol "+". The composition of functions is denoted with the
symbol "#".

p2 p4 p3 A
pre (t2:p4) = 3*abs
pre (t2:p3) = 2tid
pre :E%,pg; = succ(2)#pred(3) + id
pre ) = 2% :
t2 - - . t{ end_pre proj(1,3)#succ(l)#pred(3)
define_post

post (t2,pl) proj(1)
post (t2,p5) succ(l) + succ(2)
post (tl,p5) succ(3) + pred(1l)
p1 p5 end_pre
(a) (b)
Fig. 74: Graphical Representation of the Transitions of Fig. 73(e) and Definition of
Pre- and Post-Functions within the Grammar

Definition of Guards

According to Definitions 13, the guard function G(t) of a transition t is defined in disjunc-
tive normal form:
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G(t) = v; G&(t), with G&(t) = ~ g;()-

The term gj(t) denotes a comparison expression where integer values gre compared
using the operators "=,<,>,<=,>=". The integer values are either obtained as a re-
sult of a projection function (keyword proj) applied to a token or th?V are mtgger
constants. This is illustrated in Fig. 75(a). The guard for transition t7 is fulﬂlle"d nga
marking M(p) if there is a token in M(p) which second component has value "70" or
which second component is one number less than its third component. The symbol
"#" denotes the composition of functions.

Definition 40 introduced the dispatcher-guard DF(t). Within the grammar, the_ dispatch-
er-guard is incorporated in the guard. A special attribute within the guard is used to
mark the colored tokens that might cause a conflict at run time. Fig. 75(b) illustrates
this. Principally, transition t2 is enabled only for tokens which second component have
the value "1”, "2" or "3". Conflicts can arise from tokens which second compqnent
have the value "1" or "2". They are marked with the keyword schedu'le.d_ which is by
the compiler mapped on the corresponding bdy;-variables (see definition 40)sallie
RTDSS is in this case asked at run time to decide, according to a predefined strategy
or algorithm, whether t2 is allowed to fire or not (see chapter 5).

define_guards define_guards : =1 Gy
guard tl = proj(2)=10 or guard t2 = SChEdUJ?ed ?gd I;n)l:-]_u(:i_zj(2)23
proj (2) =proj(3) #succ(3) scheduled and proj(2)=2 o
end_guards end_guards

(a) (b)

Fig. 75: (a) The Guard Function of a Transition, (b) The Guard may contain a
Special Attribute evaluated by the Scheduler (RTDSS)

7.2.2 Extensions of the Grammar for Modelling Logic Controllers

In the following paragraphs, some of the extensions presented in chapter 4 are ;nc:;r;
porated in the grammar. As explained there, the incorporation of the sensor/ac cijatt r?
interface is done by the testing of sensor values in the sensor—guarQs. SG(t) an the
setting of actuator values within actions associated with transitions or firing-modes, I.e.,
action-guards AG(t), at the level of the sub-nets. The set of senst_)r-5|gnals .and aqtuator-
signals is implemented by a set of //O variables. They are sirpular to variables in pro-
gramming languages and used to address physical I/O locations.

Definition of I/O variables

Physical 1/0 locations of a PLC are addressed via I/O variables which are d(::'flned ac-
cording to the IEC 1131 standard. Optionally, initialization values can be assigned. An
example is given in Fig. 76(a). The variables movex and movey are of type word an'd
initialized with zero. Variable emergency_off is of type Boolean and variable statz{s is
of type double word. The physical location is specified after the symbol '%’. This is
done in IEC 1131 syntax.
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define_iec_io_variables define_io_guards
movex at %QW1l : WORD := 0 io_guard tl = status > 10 and movex = 1
movey at %QW20 : WORD := 0 io_guard t2 = movey <= 5 or not emer-
emergency_off at %QX3 : BOOL gency_off = false
status at %$ID1 : DWORD end_io_guards

end_iec_io_variables
(a) (b)
Fig. 76: (a) Definition of I/O Variables. (b) Definition of /O Guards.

Sensor-guards are Boolean expressions over the I/O variables. Their definition is exem-
plarily shown in Fig. 76(b).

Definition of Agents and Actions

According to the modeling method presented in chapter 3, an operation in the real
production environment, e.g., loading a pallet, is modeled by means of a transition or
firing-mode in the H-L-PN coordination model. If this transition or firing-mode becomes
enabled, the control logic has to be transferred to a sub-net (see chapter 4).

The grammar provides a construction for binding both control levels: the agent, which
concept and the object-oriented concept are well connected. The development of the
agent-concept shows following aspects (see Fig. 77):

Agent T1

Action1

Q1.0=TRUE
Q1.4=FALSE
Q1.5=TRUE

Coordination Contro Logic Control PLC Logic Control PLC
Firing-Mode

Agent T2
Agent T1

G&y

G83

Firing-Mode
1 Agent T2

Action2

call of a user-
defined function
| [execute Action 2

Library wait for
completion

Fig. 77: Developed Agent-Concept

e An agent is associated with a transition or firing-mode in the coordination model,
i.e., a sub-net in the logic control level, and its function is to call the set of actions
associated with the transitions of the sub-net (see Fig. 78(a)). Within an instruction
scope, positioned between DEFINE_AGENT and END_AGENT, can be defined
single transitions for the agents.

e Every agent defines 1...n control actions.

The control actions that have to be enforced from sub-nets are intended to set actuator
values depending on input/output values, i.e., signals from sensors and actuators
associated with sensor- and action-guards, and/or the current enabled firing-mode (see
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chapter 4). Within the grammar, this is formulated by if-then-else statements (Fig. 78
(b)).

The agents control the start of the actions, which are called with the key word CALL,
but they do not implement them.

e The direct implementation of input- and output-variables within an agent is not al-
lowed. Only actions may have direct access to memory of the PLC.

e The called actions can themselves start other actions.

According to the task, there are three alternatives to implement the called actions. They
can be implemented as:

e library action, which have to be declared within the grammar construction "include”,

e user-defined action, which have to be also declared within the grammar construc-
tion "include”, or

® inline action, which have to be be declared within the grammar construction "DE-
FINE_ACTION" and "END_ACTION".

Because the implementation of the control actions happens in a separate gramrTlar
construct, for the agent it is not important to which of three named sorts the action
belongs.

Inline actions are implemented within the description data. The implementation Qf the
library actions and user-defined actions will take place later. Both will be declared in the
quell data of the compiler.

define_io_variables include_actions
band4 : BOOL p_laden : FBB6
stopper4 : BOOL p_bewegen : transport
bewegenx : WORD end_include
ende at %Q1.0 : BOOL

end_io_variables

define_agents
agent transition t1 = {
if (proj(2)#succ(2)) then
ende = FALSE
bewegenx = 10
else if (proj(3) = 2) then
ende = TRUE
bewegenx = 15
else
ende = FALSE
call (p_laden)
endif
}

(a)

define_actions
action entladen = {
band4 = TRUE;
stopper4 = FALSE;

)

end_actions

(b)

Fig. 78: (a) Definition of Agents, (b) Definition of Actions

The interface provided by the grammar for calling functions and function blocks is
according to the IEC 1131 standard and it allows calling functions defined in one of the
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IEC 1131 languages and stored in a library. The application context for this facility is
wide-spread.

e Complex operations can be implemented within functions or function blocks thus

hiding the implementation details. This may be specific algorithms, e.g., for motion
control or communication.

e Existing IEC 1131 software modules and standardized function blocks like "time
modules” can be easily linked to the H-L-PN model.

An application example is presented in Fig 79. A barcode-reader reads the barcode of
oncoming items. This is done in the function block instance read_barcode. The return
value returnval of this function block instance is stored in the component barcode of
the actual firetoken for later evaluation. The read-operation is mapped on the transition
Read which is enabled only if a new item is available. This condition is tested with an
sensor guard and a Boolean 1/O variable new_item indicating new oncoming items.

7.2.3 Program for Compiling ST-IEC 1131-3 Control Logic Code
according to the H-L-PN Descriptions

Notations

Based upon the international standard IEC 1131 described in section 7.1.1, the follow-
ing notations are used in this section. A PLC application is considered to consist of a
run time environment, that is one configuration, one or more resource and one or more
task, and a PLC program. The latter consists of the unit "program” together with func-

tions and function blocks. It is assumed, that a PLC application or PLC program runs
on one PLC.

define_basic_colors
barcode = integer [1 to 2000]

end_basic_colors

Action A;: Identification| | ...
define_iec_io_variables
read barcode of the new_item at %IX79: BOOL
new item into the net ses T ;
@ action A end_iec_io_variables
: define_io_guard
Read SOOI CISPIC digital 1/O line io_guardg= new_item = true
with physical address
79 is true end_io_variables
define_actions
@ action identification = {

iec_call (read_barcode)
proj(1) = iec_return
(read_barcode.returnval)

end_actions

(a) ’ (b)
Fig. 79: (a) Model of Barcode-Reader, (b) the corresponding Grammar Example
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Choosing a Target Language

The compiler in question (CONCORDE: Compiler for Generating IEC 1131 PLC-Code
from High-Level Petri-Nets) generates from a given textual H-L-PN description-file a
logic controller program in the IEC 1131-3 language Structured Text (ST). Structured
Text is the chosen target language for the compiler, because it is a high level language
and can be perfectly adapted to the form of information contained in the H-.L-PN de-
scription to be compiled. Thus, complex algorithms can be expressed copcu;ely and
short, making the generated code readable and easier to validate and .mamtam. Also,
the niveau difference between the source and target language is minimized compared
to all other IEC 1131 languages.

CONCORDE

i Parser

4 Scanner

\

define places

H-L-PN
Description-File

Cﬁ uration- / Structure-File ‘
=8
(. |

- -1

Generation of Control Code

Control Logic
ST-Code

Fig. 80: Main Structure of the Implemented Software "CONCORDE"

Generation of a PLC Application

The desired aim would be to design a compiler that a) automatically portions parts of
the H-L-PN model, according to production steps, to different PLCs and generates the
necessary communication functions and b) generates for each part the whole PLC
application.
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State of the art is b) (see Fig. 80). However not the whole PLC application, but a PLC
program is generated by the compiler. The reason is a loss of flexibility, arising if addi-
tional programs shall run on the same PLC. Because this results in changes of the
automatically generated configuration and tasks. Therefore, the approach pursued here
is to generate only the PLC program and use market-available, standardized tools for
setting up the run time environment.

Normally, the textual description of the H-L-PN model is sufficient for generating the
PLC program. However, if the call interface is used to call functions or function blocks,
then a) the coding of these functions and function blocks has to be done separately
and b) the instantiation of the function blocks has to be done separately. The latter can
not be done automatically, because the instance names of the function blocks are used
within the grammar. Therefore, the compiler has no clue on which function block to
map the instance name, i.e., how to perform the instantiation.

To make application development easy, the instantiation code and the code for the
functions and function blocks can be inserted in the textual description. This IEC 1131
specific code is later just "copied” in the generated PLC program.

Algorithm embedded in the Compiler Program

A H-L-PN with added functionality for controlling aims at describing the behavior of
logic controllers. Thus, it specifies the relation between the inputs and the outputs.
Alike the behavior of the logical controller, the behavior of the H-L-PN has to be unam-
biguous. That is, the marking of the H-L-PN and the inputs determine the outputs and
the sequencing marking. Normally, this condition is not guaranteed by Petri Nets, be-
cause there is no rule for choosing the transition to be fired if there are several transi-
tions concurrently enabled and they are in conflict. In the proposed H-L-PN model, a
scheduler, i.e., assistance from the RTDSS described in chapter 5) is used to solve this
kind of conflicts. But in addition, the generated code has to be unambiguous as well.
This is guaranteed by the implementation of the algorithm depicted in Fig. 81.

The algorithm is based on the hypotheses that the process to be controlled is "slower”
than the logic controller.

Critical Points of the Algorithm Implementation

The first critical point to be focused on, is the implementation of Step "For all enabled
firing-modes of the H-L-PN coordination model” where the set C(t) is determined. Typi-
cally, a H-L-PN modelling an industrial application will consist of a lot more basic colors
and will have some hundred transitions. Then, the time for a complete scan cycle
would no longer meet the requirements in the process industries.

The solution is a) to scale down the set of possible firing-modes for a transition (i.e.,
C(t)) and b) to portion a complex industrial application on more than one PLC, thus
reducing the total number of transitions for a given PLC. Part a) is implemented by
taking into account the tokens in the pre-places of a transition when computing the set
C(t). Because de facto, the tokens in the pre-places of a transition determine the pos-
sible firing-modes. It can be shown, that in the most common case, when not all pre-
functions of a transition t are projection functions, the cardinality of the set C(t) is limited
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::/] C:hs lt:.;ast capgcity of the pre-places of t. Otherwise, the limit depends on the number
g tll-? of prolectlor? functions as well as on the capacity of the pre-places. Part b)
at the moment subject to the modeler (see section 7.1.2).

While (TRUE)

Reading and protocolling PLC Inputs/Outputs

For all transitions of the H-L-PN coordination model

For all enabled firing-modes of the H-L-PN coordination model

X Is there a request to RTDSS N

e ——
=
\
No RTDSS RTDSS says: . :
answeryet|  do not firey ;?;DSS Says: If (arc-function.m(*t)=1)
and
The tokens The request to the
reserved RTDSS finished G&; and Sensor-Guard TRUE

in the pre-places
of this firing-mode
must be given free

h\ Conflict-Case

The tokens The tokens

% reserved in the pre-places
in the pre-places of this firing-mode
of this firing-mode | are removed

have to be removed

Invocation of agents

%

(Generation of actions associated
with this firing-mode)

for request to RTDSS

_Reservation of tokens
in pre-places of the transition

Notice firing-mode and transition

Add tokens in the post-places of
the transition

Initiate a request to RTDSS in the case of conflicts

Setting PLC Inputs/Outputs

Fig. 81: Algorithm implemented in the CONCORDE-Compiler

A second critical aspect is that the controller program has to allocate memory to store

the tokfans residing in a place. However, none of the IEC 1131 languages does support

dynamic storage allocation. Thus, an upper bound for the number of tokens that can

pe stored in each place has to be identified. This value is the capacity of the place and

g ob;ai:)ed from the validation phase of the H-L-PN-based control system (see chapters
and 4).
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The last aspect to be discussed is the invocation of agents. As explained above, the
scan cycle has to be short and therefore the user-defined code must be short and
quickly to execute.

7.3 Summary of Components and Functionalities
of the Implemented Tool

Formally, the grammar is responsible to translate the H-L-PN-based control logic speci-
fication issued by the H-L-PN editor CCPetNet into a Control Logic Description-File,
e.g., ASCII-File. The last acts then as input file for the compiler, together with informa-
tion about logic control functions and function-blocks, declared according to the stan-
dard IEC 1131.

The compiler, developed and implemented as platform-independent software-tool, is
able to generate control logic code in the international standard IEC 1131 language
Structured Text. For performing this task, following main steps have to be completed:

e Reading the Control Logic Description-File
e Lexical analyze of the Control Logic Description-File

e Generation of ST-Control Logic Code as Structure-File

e Building a Symbol-File (Declaration of input/output variables, Instantiation of Func-
tions-Blocks)

At this time, the first skeleton, in a hardware-platform-independent form, of the PLC-
Program has been issued.

The next task, which has to be performed by the tool, is the linking of objects of the
Structure-File with those of the Symbol-File. This must be done by taking the mecha-
tronic configuration of the flexible production system (Objects-Configuration) and the
specifications of the used PLC-device into consideration. Together with the last task,
the control enforcements, i.e., actions and objects-actions, specified in the control logic
have to be programmed. This can be done in two complementary forms:

1) Edition of a control logic enforcement by means of an editor supplied by the tool.

(The edition can be performed in one of the programming language supplied by the
IEC 1131, i.e., ST, LD, FBD, etc).

2) Call of programmed Objects-Actions, which are stored in a library

This set of steps results a complete STIEC 1131 Control Logic Code for the current
application (see Fig. 82), which can be

e loaded into an industrial simulation-tool for PLC-Programmes /51/, /83/. This allows
to proof the semantic of the generated control logic, according to the specifications
of the used PLC-device and the designed H-L-PN-based control logic.

e transferred into the memory of the PLC-device and set into operation.
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Declarationof
IEC 1131 Functions /fi Control Logic 2
58] Textual Description (Grammar

H-L-PN-Based
Control Logic
and Function-Blocks Specification

CONCORDE
Compiler for Generating
IEC 1131 SPS-Code
from High-Level Petri-Nets

A\
Instantiati ST-IEC 1131 S Mechatronic
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Fig. 82: Implemented Engineering Tool to generate PLC-Code from a H-L-PN

Example of Application
The functioning of the engineering tool is described with the help of an example.

The controlled system is a linear conveyor, i.e., a FIFO Transport System (First-Input-
First-Output) with three positions p;, which can simultaneously transport 3 types of ob-
jects w;. Fig. 83 depicts the H-L-PN-based model of the conveyor which characteristics
and specifications are described for example in /25/. A part of the grammar concerning
the definition of the agents related with the operations performed in the component is
also described.
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H-L-PN Model Type of Objects = {w;, i [1:3]}
Transport Places = {pj, j [1:3]}
agent. t1 proj(1) Definition of Agents

Ip1]
in

agent tl = {p_laden)

agent t2 = {IF (proj(1)=1
THEN p_nach_p2;
IF (proj(1)=2
THEN p_nach_p3

agent t3 = {p_entladen)

Fig. 83: H-L-PN Model of the FIFO Transport System

This H-L-PN model is edited using the CCPetNet Application. Details about an Export
File generated by the Editor CCPetNet is depicted in Fig. 84.

CPN_BEGIN
name = FIFO Buffer;
id = 297,

COLORS_BEGIN
BASIC_COLOR
name = MODUL;
id=2;

tokens = 3;
BASIC_COLOR
name = PART;

id = 4;

tokens = 8;
COMPLEX_COLOR
name = MODPAL;
id = 10;

tokens = 33;
BASIC_COM-
PONENTS

id=2;

id =8;
COLORS_END

FUNCTIONS_BEGIN
FUNCTION

name = ;

id=1;

body =Abs();
parameter1 = 21,
COMPOSITED
body = succ();
parameter1 = 2
parameter2 = 1
FUNCTIONS_END

TRANSITIONS_BEGIN
TRANSITION

name = Beladen h5;
id = 104;

sc = -1,

cc = -1;

Ilc = -1;

fc =-1;

pc = -1;
is_super = 1;
super_id = -1;

FIRING-MODE
functionGuard _id = 3;
sensorGuard_id = null;

sC =-1;

cc =-1;

Ilc = -1;

fc =-1;

pc = 4;

delay = 43;

watchdog = null;
sensor_resource = S48;
action_resource = Band 1;
action_component = ET200U-1 A1.7;
action_value = set;
subcpn_id = 308;
TRANSITIONS_END

GUARDS_BEGIN
SENSOR_GUARD
name = SG1;
id=1;

term = Sensor 1
FUNCTION_GUARD
name = FGM1;
id=1;

term = proj( 1 )=1
GUARDS_END

Fig. 84: Export File generated by the Editor CCPetNet

The Export File obtained form the Editor CCPetNet is loaded into the compiler CON-
CORDE, which generates a Log-File and a protocol of the ST-IEC 1131 code-generation
process like the one depicted in Fig. 85.
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LOG-FILE for description file <fifol>

PARSING

Parsed 101 lines, no errore found.

EAR ARSI RS AT TR Al EE SRS E SN NS RSN

CREATING PLC CONTROL FLOW PROGRAM
EEE S S S S EAE A Ed NN ST E YN E TR TR EEEEaNEES

The description file describes a Coloured Petri Net.
user defined data types generated ... ok
symbol table generated ... ok
symbel table extending generated ... ok
Data Blocks generated ... ok
let level FBs generated ... ok
lfpre appended ... ok

/"w
a—mmn -'--\_‘H__//_\________,__—-—-”\

A oo s s oo s SV SR SIS e -
{ ID | Name | Range 3
‘-:.:;g.;g-‘;--.-----ﬁ------------9----------..-...
| 2 | teal [0 e 2 |
| 1 | puffer (e 3
PN R ) (o8 P g e S, ol e P £ S P T = e e B~

no complex colours
Place Table:

R ) D B P S S T I I s = e e e e e L
| ID | Name | Max | Colour Type
bt L 2 '-ﬁzz:-ﬂ----------.;-----ﬂlz-o--s--0---—-.----'-:
/“‘——_—__\— _/\.
"3 w

O B e . T

GENERATED POUs

U EsESEEAEEEEE S
- P e e e me e e s m————————--aaae= *
'

| Type | Number | Starting Value |

P R EeNEEENENRf AR EEREEESaEEE

[EUDTE =] s | 1 (set) {
| DB | 11 | 10 (set) |
| Fe | 2 | 41 (set) |
| FB | 78 | 10 (set) |
| OB i 20 | = |

1/o | 9 | --- I
* s .- A ¢em e e e e m—- - —--— -

vwwvwey END LOG-FI LE wvwrwwy
Fig. 85: Log-File generated by the Compiler CONCORDE

The ST-IEC 1131 code is loaded into a programming system that generates the control-
code. It is loaded into the PLC, which communicates with the hardware components,
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i.e., sensors and actuators, of the FIFO system by means of a Field-Bus interface (see
Fig. 86).

Monitoring & Visualization Programming System

Remark:
@ Sensor

B Actuator

ey i

— A " :
—= Communication Communication
I Loading

() _ H

Field-Bus 1r

0
o
3
=
e
@
o

o
5 D
Tm

TIIII JIIE

Slave / Output
""""" A |l
& , | [ 1 L
HTH First-Input-First-Output Transport System 1 HA’H
2 1 N 1V m
® /(Unioading)

® 74
(Loading)

= ———
p_laden p_entladen

transport place py transport place p, transport place p3
Fig. 86: Implemented Architecture to Control the FIFO Transport System

The hardware-platform-independent characteristics of the developed tool allows the
communication between the PLC and other components of the hierarchical control Sys-
tem, e.g., the monitoring and visualization system like the one presented in chapter 6.

7.4 Summary

In the manufacturing industry, programmable logic controllers (PLCs) are a widely used
platform for implementing logic control systems. For this reason, the possibility to auto-
matically generate executable PLC-code from the H-L-PN-based logic structures devel-
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[ ed at
oped in chapters 3 and 4 was here researched and the results were implement
industrial level.

: logic
By means of the grammar developed here, textual representation of the control log

s i res-
is derived from the H-L-PN-based description of the logic generated by the editor p
ented in chapter 6.

The textual description serves then as an input for a compiler, which generaﬂfaosr F:r';tz
code according to the standard IEC 1131-Structured Text. Moreover, means e
grating special features of a PLC in the code derived from the H-L-EN \n.;ere t?ons &
In this context, the H-L-PN grammar provides an interface for calling unc;
function blocks defined in one of the languages of the standard IEC 1131-3.

. ted logic
The compiler was integrated in a engineering-tool able to load the genera 9
control code into an industrial PLC.

: o-
In order to illustrate the applicability of the implemented solution, a we“-k:'l%v;:u(;?jmvfith
nent of flexible production systems, i.e., a FIFO transport system, wafj S Cmpu
H-L-PN and then set into operation and controlled from a PLC loade

control code, which is generated by the named compiler.



8 Conclusions and Outlook

” ”.

The factors "time”, "flexibility” and "quality” have more and more importance for the
existence and success of a company under the hart pressure of international competi-
tion. Important advantages can be won only with the shortest development time — from
the idea to the final product. The production must meet the demands of the market,
but it has to be customers oriented, as well. These tasks can be fulfilled only through
the usage of Flexible Production Systems.

The degree of flexibility of these systems depends, not only, on the flexibility of single
components, but also, what is even more important, on its control system (DECS). For
this reason, the use of complex design methodologies, and control- and monitoring-
structures is necessary in order to develop this sort of production systems.

Programmable Logic Controllers (PLC), as well as CNC, NC, RC and PCs, are currently
used for running of flexible production systems. It is often to be seen that the usage
of different design- and programming-methods for PC-/PLC-solutions results time con-
suming and therefore costly processes. Design and implementation of control system
— tools and methods — is completely separated from the planning, design and imple-
mentation of the flexible production system. So, should the FPS layouts or product
choice be changed, reprogramming or new programming of the control software is
necessary.

The usage of High-Level Petri Nets (H-L-PN) is a new base for design, modeling, valida-
tion and implementation of the flexible production systems.

H-L-PN is, opposite to other methods, much more suitable for description of FPS, and
discrete, asynchronous and concurrent processes that might occur. H-L-PN has a well-
known mathematical theory as base and can graphically show all process events. H-L-
PN-based models can be used in the FPS planning-, as well as in the development-
and implementation-phase.

The H-L-PN-based model of the FPS is also suitable for the control of production sys-
tems. The advantage of this procedure is obvious. Once the H-L-PN model of a FPS
is created, a qualitative (structural analysis) and quantitative (e.g., simulation) analysis
can be performed in order to validate the system specifications. After this, control logic,
of high quality and without development errors, can automatically be generated
through derivation of control signals from the validated H-L-PN model.

This work describes an H-L-PN-based approach for FPS development that comprises
a new control- and monitoring-concept. Opposite to other solutions, a designed, mod-
elled and validated FPS can be controlled directly through data exchange between
H-L-PN-based model and production system, and through information exchange be-
tween H-L-PN-based model and overlapped control levels (real-time decisions and/or
planning level). The usage of such complete platform-independent and -configurable
models of the systems and their control structures makes possible important saves of
time and costs.
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8 Conclusions and Outlook

Two new engineering methods are presented. The first method supports the user in the
design and implementation tasks of the H-L-PN- and PC-based control- and momtor—
ing-system of FPS. The second one allows automatic creation of IEC 1131-90nf0rm
PLC-code out of validated and optimized H-L-PN-based models of FPS. I.n this case,
the resulted control code can be loaded directly in a PLC or an off-line simulator.

The complete FPS/DECS development process, i.e., design..programming afc‘id ‘mF:Lee'
mentation, can be entirely supported through the engineering-tool — based on
H-L-PN theory — developed within this work.

The both above named methods used H-L-PN-based models. For this reason, they o
suitable, not only for the development and control of a FPS, but also, because of thslr
graphical and mathematical character, for the visualization of the intf:rnal events of tAe
System, and through this for the monitoring/control of the production processes. n
extension of the new FPS control concept using an industrial control- and mor'n.?rmtgo
component was also developed. This component offers, not only the pOSSlbl!ITy :
show the evolution of H-L-PN-based control model, but allows also fhe_prep?ratlgnthoe
user-friendly graphic representation of the controlled process. Herewith is achieve

. ¥ 1 SVS-
integration of the human operator into the development concept (human-machine sy
tem).

Because of their extension abilities and their modular construction, in this work fd?t\;:al;
oped and implemented control structures can be used as an excellent base :t.nr Sirrual
ones. Especially, the engineering-tool can be seen as a new FPS component: :ronous
representation of the real flexible production environment. It is gble to run sync'th T
with the FPS and both can be seen as a unique production entity. Compzrednx e T
approaches, the proposed engineering-tool does offer a number of a \;a ¥ SS: ca;ses
instance: specifications can be verified, implementation can be a'utorpate .f g
can be generated, labour costs can be saved by reducing W?rkmg'tlmf g and imple-
a test suite. However, the most important aspect is the possibility to develop

ment more reliable FPS/DECS.
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